Programming - User Support

Applications

ill

I

. Issue Number 58

November/December 1992

Z-System Corner
Dr. S-100
Development Tools
Real Computing
Kaypro Reset Move
Computing Timer Values
Multitasking in Forth

The Computer Corner

US$3.96

"I« Reads, verifies, and programs 2716, 32, 324, 64,

~| - ppradabie to 32 Meg EPROMS

“lf MadeinUSA

" EPROM PROGRAMMERS

$750.00

LR CER SIS SRR IR« Completely stand-alone or PC driven
ww ogramming and Fasy Programs E(E)PROMS

W LGN ¢ 7 Magabit of DRAM
User upgradable to 32 Megabit
.3/.6" ZIF socket, RS-232,
Parallel In and Out
+ 32K internal Flash EEPROM for easy
firmware upgrades
Quick Pulse Algorithm (27256
in 5 sac, 1 Megabit in 17 see.)
* 2 year warranty
* Madein USA
* Technical support by phone
« Complete manual and schematic
Single Socket Programmer also
available. $550.00
Split and Shuffle 16 & 32 bit
100 User Definable Macros, 10 User

and-Alone Gang Programmer

P

Definable Configurations
* Intetligent Ideniifier
« Binary, Intef Hex, and Motorola S

muy Tactile Keypad (not membrans) 20 x 4 Line LCD Display

al Programmer for PC $139.95

i mvﬁuﬁiﬁeﬂtl«veraging Algorithm. Programs 64Ain 10sec., 256in 1 min., 1 Meg (27010,011
2 Meg (27C2001) in 5 min. Internal card with external 40 pin ZIF,

)in2min.46sec.,
2ft. Cable - 40 pin 2IF

64A, 128, 128A, 256, 512, 513, 010,011, 301,
= 2762001, MCM 68764, 2532
& Aslomatically sels programming voltage
& Load and save buffer to disk
« Binawy, intel Hex, and Motorola S formats

¥ Mo personality modules required

« ‘tyear watranty « 10 day money back guarantee
+Adipters available for 8748, 49, 51, 751, 52, 55,
. TMIS 7742, 27210, 57C1024, and memory cards

| NEEDHAM'S ELECTRONICS

| ton. - i, 8am - 5pm PST

Call for more information

8 (916) 924-8037
C.OD. @ E FAX (916) 972-9960

4539 Orange Grove Ave, « Sacramento, CA 95841

] éJOumey with us to discover the shortest path between

| The Forth programming language is a model of simplicity:
1 Inabout 16K, it canofferacomplete development systeminterms

'| s an “open” language, Forth lets you build new control-flow
- -} structures, and other compiler-oriented extensions that closed

| Student rates begin at $18 {with valid student LD.).

Cross-Assemblers . iowssssowo
SlmUIators as low as $100.00
Cross-Disassemblers . ova 100
Developer Packages

as low as $200.00(a $50.00 Savings

A New Project
Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.
Get It To Market--FAST
Don't wait until the hardware is finished to debug your software. Our
Simulators can test your program logic before the hardware is built.
No Sourcel!

A minor glitch has shown up in the firmware, and you can't find the original
source program. Our line of disassemblers can help you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'll be ready for anything.
Quality Solutions

PseudoCorp has been providing quality solutions for microprocessor
problems since 1985.

BROAD RANGE OF SUPPORT
o Currently we support the following microprocessor families (with
more in development):

Intel 8048 RCA 1802,05 Intel 8051 Intel 8096
Motorola 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motorola 6809 MOS Tech 6502 WDC 65C02

Rockweli 65C02 Intel 8080,85 Zilog 280 NSC 800
Hitachi HD64180 Motorola éaooo,a Motorola 68010 Intel 80C196
e Al products require an IBM PC or compatible,

So What Are You Waiting For? Call us:
PseudoCorp

Professional Develogyment Products Group
716 Thimble Shoals Bivd, Suite E
Newport News, VA 23606

(804) 873-1947 FAX: (804)873-2154

S W I

' programming problems and efficient solutions,

ofcompiler, editor,and assembler, aswell asaninterpretivemode
to enhance debugging, profiling, and tracing.

Janguages do not.

Forth Dimensions is the magazine to help you along this
journey. Itis one of the benefits you receive as amember of the
non-profit Forth Interest Group (FIG). Local chapters, the
GEnie™ForthRoundTable,andannual FORML conferences are
alsosupported byFIG. Toreceive amail-order catalog of Forth
literature and disks, call 510-89-FORTH or write to:

Forth Interest Group, P.O. Box 2154, Oakland, CA 94621.
Membership dues begin at $40 for the U.S.A. and Canada.

“GEnié is a trademark of General Electric.

SAGE MICROSYSTEMS EAST
Selling and Supporting the Best in 8-Bit Software

Z3PLUS or NZCOM (now only $49 each)
XBIOS for SB180 ($50)
ZMATE text editor ($50)
BDS C for Z-system (only $60)
DSD: Dynamic Screen Debugger ($50)

PCED: ARUNZ and LSH for MSDOS ($50)
ZMAC macro-assembiler ($50, $70 with printed manual)
Order by phone, mail, or modem and use
Check, VISA, or MasterCard.

Z-System public domain software by mail.
Regular Subscription Service
Z3COM Package of over 1.5 MB of COM files
Z3HELP Package with over 1.3 MB of online documentation
Z-SUS Programmers Pack, 8 disks full
Z-SUS Word Processing Toolkit
And More!

For catalog on disk, send $2.00 ($4.00 outside
North America) and your computer format to:
Sage Microsystems East

1435 Centre Street

Newton Centre MA 02159-2469
(617) 965-3552 (voice 9 to 11AM)
(617) 965-7259 (pw=DDT)
(MABOS on PC-Pursuit)

i
i
i
i

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Bill D. Kibler

Technical Consultant
Chris McEwen

Contributing Editors
Brad Rodriquez
Matt Mercaldo

Tim McDonough
Frank Sergeant
Clem Pepper
Richard Rodman
Jay Sage

The Computer Journal is pub-
lished six times a year and mailed
from The Computer Journal, P. O.
Box 535, Lincoln, CA 95648, (916)
645-1670.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1992
by The Computer Journal and re-
spective authors. Ail rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $18 one year (6 issues), $32 two
years (12 issues). Foreign (surface
rate). $24 one year, $44 two years.
Foreign (airmail): $38 one year, $72
two years. All funds must be in U.S.
doliars drawn on a U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal,
P.O. Box 535, Lincoln,CA 95648.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowiedge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overlooked.

Apple II, i1+, lic, lle, Lisa, Macintosh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. DateStamper, BackGrounder ii,
Dos Disk; Plu*Perfect Systems. Clipper, Nantucket,
Nantucket, Inc. dBase, dBASE Il, dBASE Ill, dBASE Ill
Plus, dBASE IV; Ashton-Tate, Inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordStar, MicroPro Inter-
national. IBM-PC, XT, and AT, PC-DOS; !BM Corpora-
tion. Z80, Z280; Zilog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromint, Inc.

Whete these and other terms are used in The
Computer Joumal, they are acknowledged to be the
property of the respective companies even if not specifi-
cally acknowledged in each occurrence.

TC

The Computer Journal

Issue Number 58 November / December 1992

Editor's Comments.........ccccoiveminnrmnmmescnmnseeeessnenes 2
Reader to Readerc...... veereeressssssssssnsmnnennaresnaraan 3
Z-Systems COIMErc..cccecerieinmnrmiissneneninsnsssesnesssenes 7
Language Independence, part two.

By Jay Sage.

Real Computingccccccernvnnnrriinees N 11
Minix, UZ!, and GNU.

By Rick Rodman.

Affordable Development Toolsccccoviceeenccnnnee 15

Finding affordable microcomputer development tools.
By Tim McDonough.

Resurrecting your S-100 system.
By Herb R. Johnson.

Mr. Kaypro vesessmmssecesereesenenaresnannnann cerererereess e 20

Moving the reset botton.
By Charles B. Stafford.

Computing Timer Values.cccvvnniccnnnnnsnissinnanee 21
Finding monostable values using "C".
By Clem Pepper.

Multitasking Forth........ccccecvnininniceniic e, 28
Forth Multitasking in a nutshell.
By Brad Rodriguez.

The Computer Corner...........ccccvccerecceeniinenrnsreennas 40
By Bill Kibler.

EDITOR'S COMMENTS

* Welcome to the holidays. We don’t
have any special seasonal articles
for you in this issue. However I did
get a welcome gift as I was finish-
ing up the magazine. Dave Thomp-
son the owner of MicroCornucopia
sent me all his Kaypro disk. Now
TCJ is ready to sell you those
Kaypro disk that you have been
waiting to get. I am printing half
the list in this issue, with the second
part next time. That list is on the
last few pages of the magazine.

Our writers have been busy as usual
producing some great material for
you. We have Jay Sage continuing
his discussion on Language Inde-
pendence. TimMcDonough is back
with a report on microprocessor
development tools. Rick Rodman
" comments on Minix and UZI (a
Z80 UNIX?). We start out Kaypro
support with Mr. Kaypro by Charles
Stafford. Herbert Johnson explains
how to get started bringing up an
S-100 system.

We have two special articles for
you, one to bring back those funda-
mentals of electronics, and one on
multitasking in Forth. Clem Pepper
show you a great use for “C”’, by
explaining and giving you the source
code for a simple program to calcu-
late the resistors and capacitors
needed for timers and monostable
oscillators.

Brad Rodriguez tells us all and more
about the Forth multitasker. This in

depth study should answer ques-
tions about Forth’s multitasker, as
well as giving examples and alter-
natives to the way F83 works now.

Doing Business

I have been working very hard to
get TCJ’s production problems un-
der control. The subscription prob-
lems however continue. It is be-
coming apparent that a new mailing
label program is needed. I have been
using the old program, but far too
many items are not handled cor-
rectly. For the reader this means
more time until mailing related prob-
lems go away. Please bear with me
as [try and correct this problem.

When phoning TCJ please remem-
ber that my office hours are 9to 11
PM week nights in California. My
employer has dropped the alternate
Fridays off, so I no longer can make
daytime phone calls except on week-
ends. This makes doing business
very difficult, but there are no alter-
natives at the present.

I will not be teaching next year and
so two more nights a week will be
available to catch up on mail. Cur-
rently I only answer mail and phone
messages by letter between issue
preparations. It goes something like
this: edit stories non-stop; page set
the stories in a rush, do a panic
collate the material into a magazine
(ignoring errors in hopes of being
only a week or two late and not two

months behind), take to printer
quickly; update last months worth
of phone calls and subscription
updates; print labels before printer
has issues ready (takes 3 hours to
print if no errors happen); get is-
sues back and put labels on over
two very long nights; take time off
from work to mail out the issues;
relax for one day; start contacting
writers; do mail; start again.

To add to all this frantic chaos, I
must dig into my own pocket each
issue to cover expenses beyond sub-
scription returns. I have calculated
cost at $2.75 each to mail in the
US. So far renewals and new sub-
scriptions have not been keeping
pace with expenses (about 30%
short). The results of this will be
subscription increases next year,
about a dollar per issue for now.
This is far short of what some have
suggested 1 charge ($50 a year),
but well within what others are
charging for like publications. As
always I am open to suggestions
and alternative proposals.

Till next issue, read, enjoy. and be
merry, Bill Kibler.

The Computer Journal / #58

READER to READER

Letters to the Editor
All Readers
MINI Articles

8/11/92
Dear Mr. Kibler

I just received the extra “‘free’” copy of
TCJ, and was fairly pleased at the changes
discussed.

My perspective on things:

I am one of those that has been looking
for a good alternative to the Byte/Cre-
ative Computing of yesteryear. Today’s
Byte is not much more than PC Maga-
zine with a few features on bigger per-
sonal computer systems.

Dr. Dobbs Journal often has interesting
material, but has headed very much into
software engineering, which may be
useful, but isn’t much fun.

I saw one issue of MicroCornucopia,
which seemed to be just about perfect in
having coverage of various levels of
“hobby computing.”” Even the articles
that I didn’t have any thoughts onimple-
menting were highly interesting. They
even had some people who could actu-
ally write, and an editor with a good
sense of humor. 1 understand that that
issue may have been the last one, alas!

Then T heard about TCJ, which was a
little more hardware oriented than I am,
and was foremost a CP/M and Z-System
journal. But I heard that they were head-
ing towards more support of Forth, and
tried to do various sorts of coverage.
Sounded pretty neat.

After a year, it scemed to be a little too

oriented towards CP/M stuff, in which I
have relatively little interest. Issue #56

The Computer Journal / #58

seems to be better oriented, from my
perspective.

I'll just quickly describe my computer
system.

- Atari Mega STe, 4MB RAM

- SCSI Hard drive (85MB, mostly full!)
- Using GNU things like GCC (GNU),
and perl (Practical Extraction and Re-
porting Language OR Pathologically
Eclectic Rubbish Lister ... Probably wor-
thy of an article in TCJ.)

- Multitasking system called MINT
(MINT is Not TOS)

People that want to do UNIX-like stuff
on the ST should check out MiNT (I can
send out copies - it uses the GNU Copyleft
license, and is free!). It tends to crash
quite a bit on me, which is partly a
function of having a lot of system utili-
ties that ‘‘break OS rules’” and a func-
tion of working on fairly complex code
that crashes far too much...It would work
better with an MMU, I’'m sure.

It’s probably a more viable system than
MINIX, particularly since it actually has
some Atari support, and extensive de-
veloper support on Usenet.

- The LATEX typesetting system. Its
fundamental purpose is to do ‘‘nasty
math,”” like:

(editor comment....It’s does such a nice
Jjob of nasty display that I can’t even try
matching them...take my word it looked
great in his letter...)

It produces VERY nice output, and is
extremely portable.

- Many implementations of Forth for the
Atani ST

I know of only two version that I don’t
have, one being the Forth-83 for the
68000, and the other being some f-83
commercial variant called MutliForth. [
probably ought to do an articie for TCJ

on the various implementations that I do
have. (Mitch Bradley’s Forthmacs, The
Australian FORST, H&D Forth, 4xForth)
cach certainly has advantages and disad-
vantages. 3 of these are commercial, so
that people might be quite pleased if
they got reviewed. (There would be some
kind words for each one of the bunch.)

My current ‘‘big project’’ is some nu-
merical analysis work, solving some
fairly large scale optimization problems.
More specifically, I am nearing comple-
tion of a Master’s thesis on the topic:
“Using Interior Point Methods to Solve
the Multicommodity Network Flow Prob-
lem.”” When I’'m not writing letters, I'm
debugging code for some combination of
linear programs and network flows.

One thing that is notable about all this
stuff is that unlike the 8 bit users, I don’t
have any important applications that are
NOT memory intensive. Thereisn’t even
one program (of importance) that takes
less than 64K of RAM. The various com-
pliers vary fairly wildly in memory con-
sumption - GCC would not work when
[had only 2MB, and [think it would be
happier if I had more memory. Perl dy-
namically generates hash tables to build
*‘association lists,”” and may take up a
whole lot of RAM, or (relatively!) little
if there’s only a little data.

Something that I would like to see/get is
some sort of small single-board com-
puter that could act as an experimental
controller or perhaps as a home-control
coprocessor within my computer system.
I've got this HUGE case in which my
hatd drive is mounted. There’s power to
spare, cables, and quite a lot of space.
Every time I look around, I see another

different single board computer that
wants to be used.

At this time, mongy is certainly a major
restriction for me. The question is: Should
I find some 8031/51 Kit, find some way
of getting some old Z80 design to run, or
maybe pick up one of those New Micros

- *‘Single Chip Computers?”” There’s no

old code for me to support - I can go for
something new without breaking any-
thing. What would be nicest would be to
have something running Forth, with an
extra serial line to tether to cither the

"VTI100 or the ST. I'd like to see an

article discussing some of the pros and
cons of different small controllers.

I hope that this information is useful,
and that it can help (to some extent) to
guide where things go at TCJ. I'd cer-
tainly be willing and able to write an
article or two, within the areas that I
know. I’ve mentioned a couple of my
ideas - if you have any thoughts, T
wouldn’t mind hearing them!

Yours truly, Christopher Browne, Uni-
versity of Ottawa

Well Mr. Browne:

I was unable to print your letter last
issue, but your letter only seems to get
better with time. Since you sent it, | have
been working on finding reasons and
applications for classic systems. Filling
your slot in the disk cabinet would be a
great place for an AMPRO or YASBEC
systems, You might consider using it for
a print spooler as the LATEX output
looks like it might require lots of printer
Sfunction commands.

However I might also recommend the
Motorola trainers and sample boards.
They were selling the 68HCI16 demo
board for §168. Not only do you get a
full system, but they give you TONS of
literature about the chip and support
software (includes PCDOS based assem-
bler and debuggers).

Being an Atari ST owner I know of their
great cost/use ratio. I have MINIX for
the ST and have found it lacking in some
areas. Your MiNT sounds like something
Iwould like to try, or better yet have you

tell us all about it. I guess my main
question is source code, does it come
with it all?

You are also correct in that TCJ readers
are interested in more than CP/M. I am
finding out that some of our information
is not available in any other magazine.
That is one reason [keep saying we are
and will continue to be the only maga-
zine supporting classic systems. I am
sure you have found out that most maga-
zine are treating the Atari ST as a clas-
sic system as well. So if you want to do
that article about Forth systemson ST's,
we are ready and waiting. Thanks for all
the comments. BDK.

October 5, 1992
Dear Bill:

I picked up the 7CJ survey from GENIE
yesterday and will answer by mail.

The first issue of 7CJJ under your lead-
ership came the other day. I confess to a
fair degree of disappointment in it. Hav-
ing subscribed to the Journal since about
issue 37, I have a great appreciation for
what it has contributed to my knowledge
and skill as a programmer in Z80. (My
contributions to the Z-System commu-
nity include ZDB, ZDT, ZBIB, and
IOPZXR). I also enjoy other articles (al-
though I am not at all into FORTH). My
disappointment has more to do with the
quality of the writing and editing than
with the content. Your ‘‘Next Ten
Years™ on page 5 of issue #56 abounds
with typos, grammatical and punctua-
tion errors, and awkward, confused, and
incomplete sentences. Maybe this does
not matter to engineer types -- which I
am not -- but a technical journal ought
to be clear and accurate. I have some
background as a writer, having written
and reviewed for the late and lamented
PROFILES and MicroCornucopia.

Now to answer the questions in your
survey:

1) Why do I read 7CJ? My main interest
is in Z-Systems, ZCPR3, Z80 stuff, al-
though I generally read everything else.

I never miss Jay Sage’s column. I miss
terribly Bridger Mitchell’s great contri-
butions, Al Hawley and Terry Hazen are
electronic friends whose articles are al-
ways helpful.

2) What do I want from 7CJ? See #1.
3) How much equipment do I have?
Kaypro 11’83, modified with TurboRom,
42 Meg harddrive, modem, printer,
Macintosh. I also use MS-DOS stuff at
work,

4) Would T still subscribe to T7CJ at $50/
yr? $100/yr? Price of subscription will
have very little bearing on my decision
to renew when the time comes. Content
of interest to me and quality and clarity
of writing will determine.

5) Is there another magazine’s format
you like better? No comment.

6) What do [want? Quality articles -- in
some cases longer may be better to cover
subject adequately. I like regular writers
who have something to say. I lean more
toward software than hardware topics.
Advanced and beginner topics are both
appreciated. 1 was once a woeful begin-
ner.

7) What do I hate most about 7CJ7 1
think 1 have already covered this ques-
tion except for one thing. I really hate
the blue cover.

Bill, I know I've been fairly critical. I do
want 7CJ to succeed, and I'd be happy
to help out in some way as a copy editor
or consultant if that fits into your needs.

All the best to you and TCJ.
Joseph 1. Mortensen, Midland, MI.

Thanks for your sincere comments Jo-
seph.

It seems my panic in putting #56 to-
gether caused more errors than I thought.
I am trying to cut them down, but must
confess it will take several issues and
Jreeing up of time to correct the prob-
lems. 1 have asked my contributing edi-
fors to act as reviewers of articles, but
alas they too are very busy. In the near
Suture I may call on you to review ar-
ticles, or better yet help in getting them

The Computer Journal / #58

and making sure they fully explain the
topic for all levels of our readers.

We will be raising our rates after the
first of the year. Mostly to offset and
correct foreign mailing rates, but also to
try and get some extra money so our
writer might get some compensation for
their hard work. As to your favorite
writers, I only hope they see this and
contact you to learn what you might like
to see them comment and report on. I
have asked all our past and present writ-
ers for articles, but it is up to them and
not me as to when I have something of
their's to publish.

You might consider writing something
about your Z-System programs and us-
ing Z-products. Many of our readers are
real beginners to CP/M and ZCPR and
1 am sure would love to hear about your
early beginner projects. As always, I am
grateful you took the time to respond to
my survey. Thanks for your response
and support of the Z-community. BDK.

Sept. 24, 1992
Dear Bill,

I have recently introduced a few people
to Z-system over here, at the same time
1 have sent details of 7C.J to them. Some
of them have expressed an interest in
TCJ but do not want to subscribe without
seeing what it is like for themselves,
they to far away from me to see one of
my copies. I am enclosing a list of Z-
system users and interested people, you
might like to send them an introductory

copy.

I have all TCJ from number 25 up to
date and have recently ordered all the
available back issues.

I own a SB180FX with ETS board and
unused GT180 graphics board which I
was hoping to use as a terminal but it is
beyond me to get it sorted, 1 have the
denied Turbo Module 2 with graphics
toolbox, but it needs some software to
get the lot together. Has anybody used
this board? I have had no mention of it
since it was introduced in Byte several
years ago. | also have an Amstrad

The Computer Journal / #58

PCW8512 which runs Z3plus and
doubles as a terminal for the SB180FX.

Keep up the good work with 7CJ as
without it I would have given up com-
puters long ago or worse still use and
IBM clone.

Your Sincerely, Mark Minting, Suffolk,
England.

Thanks for the names Mark.

I sent all the people on your list a trial
subscription. They should have gotten
issue #57 by now, but knowing that the
surface mail takes forever to get to Fu-
rope they could still be in shipment. |
have decided to reprint (photo copy)
back issues as sets, so you could get
bound sets and fill in the gaps (if you
have any).

It seems that CP/M is alive and well in
England. I recently received a letter from
a person still making and selling CP/M
systems. The Amstrad appears to be very
popular as well (something like 500,000
strong). As to your graphics board I can
only hope someone reads this and send
us the articles you need. The idea of
using classic systems for terminals is not
new, but certainly a great use. Maybe |
need to find some articles about turning
Kaypros into X-Terminals or ANSI com-
patible (MSDOS ANSI.SYS) terminals.

With all the increase interest in UNLY,

classic systems as terminals might be
very cost effective.

Thanks again for the list of possible
users, and keep up the good work in
spreading TCJ’s name around Europe.
BDK.

Sept. 23, 1992
Dear Bill

I am enclosing my check for $20.00.
This is in part a donation to support TCJ
and for issue 56 which 1 have not re-
ceived. Please send me a copy of issue
#56. I don’t understand the post office
not forwarding TCJ since they forwarded

everything else. Any way I don’t want to
miss an issue.

1 have been an avid reader of TCJ since
I met Art Carlson at the SOG in Bend
many years ago. I started subscribing
with issue 16, and have perused every
issue since. The mix of articles has been
great. [like both hardware and software
subjects. Al Hawley’s series on assembly
language have been great. Jay Sage’s
have been near the top of my list.

What I have liked especially about TCJ
is that in addition to articles I can under-
stand there are articles that stimulate my
though and interest. TCJ is essentially
the only serious journal that is keeping
alive CP/M, and 8 bit computing. Your
idea of responding to the novice as well
as advanced hobbyist is great. Please
keep up the good work.

Yours sincerely, A. A. Straumfjord,
Camp Sherman, Oregon.

P.S. I personally would find TCJ worth
$50 or $100/yr but I fear many subscrib-
ers could not afford that.

Thanks for the extra money Al.

The last few months have been a big
money drain for me personally. TCJ
hasn’t paid it's own way for a long time.
I’ll put some of your donation toward
the increase in rates coming up next
year. I have figured out it cost me about
$2.75 to get an issue to you. So our
problems with the post office was just
too much. I tried sending make up issues
out, but discovered I had spent almost
an extra $100 doing that. I have had a
talk with the post office and am sending
TCJ with a minor change which should
eliminate (or at least cut down) on in-
correctly handled issues.

Well if you met Art at a SOG, you most
likely saw me as well. I went to all the
SOGs but the first one. I also helped Art
man a table more than once. I really
miss having SOG like meetings, so we
are starting to consider having one in
Sacramento next summer. Charles
Stafford our Kaypro person has had sev-
eral here already and wants to try and
go national. With the Trenton computer

feast in New Jersey, only seems natural

to have one on the west coast to match.
I believe that 30% of my subscribers are
from California. It may be hard getting
your favorite writers out here, but we
will try. I know they like seeing and
hearing from their fans.

Thanks again, from Bill Kibler.
Oct. 3, 1992
Dear Bili,

I apologize for taking so long to reply to
you. ,m terrible about writing letters.
Articles I can whip up in a hurry, but
letters...

I’m quite pleased with your new format.
You probably share the kind of frustra-
tion I have felt with ASICs, since you
specifically say none of those in articles.
Thank you.

I have a little difficulty writing elemen-
tary level articles. The biggest problem
is that no steering is possible. I often do
classes in beginning LANS and in those
I can adapt as I go.

There is really little difference between
a stat mux and a LAN. That’s usually
the approach I take in trying to explain
how a LAN works. I prefer not to con-
fuse the issues of media versus access
method. In effect, a multi-user computer
becomes a degenerate LAN or in some
cases a “‘LAN in a can’’.

As far as Netbios, leave me out. Most of
the bad experiences I alluded to in my
articles have been from PC networks.
Personally I never thought any PC ever
belonged on a LAN, although the BSD
for PC might finally make it. Usually I
tell people to get a workstation or some
other capable machine and put two in-
terfaces in it so that all the PC’s can be
isolated on their own segment without
causing grief for everybody.

As far as network checkers, we make use
of Netwatch quite a bit, It’s frecly avail-
able. There are some packages that are
even better, but some of them have so
much information that you can’t read
the display from a distance. Netwatch

just scrolls the header of possible pack-
ets on the screen.

By the way, do you have Internet access?
It was very convenient for me to be able
to email my stuff to Jay Sage.

Wayne Sung

I loved getting your hand written letter
Wayne. I am a lot like you when it comes
to letters and articles. That is one rea-
son I often hand write responses (only
use computer for articles not letters), as
well as being so much faster and per-
sonal. Please don't feel you can't
“‘steer’’ our readers like you do your
classes. I know what you mean about
getting students to look over material
and concepts by just prodding them in
the right direction. However I find the
students ‘‘steering’’ me more often than
not. It is all those funny questions that
make you think they just woke up that
minute in your class even though you
have been looking them straight in the
Jace during the last hour of lecture. My
advice to all my writers has been 1o
think you are teaching a class and talk-
ing to students not readers. Maybe just
tape recording your class and reprint-
ing the questions and answers would
make some great articles.

Novell’s Netbios has been nothing but
problems again. We thought we had the
problem fixed only to find it back again
last month. Yes my opinion about net-
works is changing but I am not burned
out on them yet (soon however I am
sure). 1 think you are a little overworked
like most of the writers right now. The
economy has everybody doing double
duty and some like me doing triple duty.

I have looked for Netwatch but yet to
find it. I will keep looking. How about an
article on what and why of checking
network data by using Netwatch? I know
my students can’t wait to learn about
trouble shooting LANs. On ASICs, it
really is PALs, they just burn out too
often for my taste. Then when they do
burn out, often the whole system be-
comes junk when the supplier is gone
and you have no replacements for the
part. The official stand at TCJ is do it
Sirst in TTL chips, then show the differ-

ence or alternate PAL option. Or in short
give us choices and alternatives.

Lastly I am trying to get on Internet. |
have joined Compuserve to access their
Internet link, and now it seems GENIE
has started doing Internet as well (which
I already belong to.) With so many things
to get up to speed on, Internet is really
a back burner option at the moment. |
hope to be using it some time after the
first of the year. Thanks again for all
you have done for TCJ. Bill Kibler.

10-17-92
Dear Mr. Kibler,

I've just received issue #57 of TCJ, with
my article "Shell Sort in Forth". My only
lament is that a shaky Undo Key appar-
ently introduced a series of characters
into a line of code in screen #7. The line
between BEGIN and WHILE should be

DUP GAP @ - DUP 0< NOT SWAP
S@ SV @ > AND

as in screen #13. Ah well, fast comput-
ers only make for faster mistakes!

Yours truly, Walter J. Rottenkolber

Thanks for the correction Walter. Your
article fit in perfectly with the introduc-
tion to Forth. Not only was 1 able to give
our readers a good how to get started,
but also a great application in the same
issue. I try to get supporting articles as
much as possible, but that option is based
more on what our writers give me and
less on what I would like to see.

Our readers will be looking forward to
one of your next articles. You have men-
tioned doing some more applications
(game of LIFE, and Interrupt handling)
which I am sure will go over very well.
Your idea however of showing how to
debug Forth code, especially after the
typo above, is proably something our
readers could use now. Learning to de-
bug what you have written is always
such a big hurdle for beginners to mas-
ter. Thanks for all your support of TCJ.
Bill Kibler.

The Computer Journal / #58

The Z-System Corner
By Jay Sage

Regular Feature
ZCPR Support

Language Independence

In my last column I described a new idea
for allowing message text in programs
to be changed easily for adaption to vari-
ous languages, or even just to suit a
user’s preferences. I would like to con-
tinue that theme this time as well.

First, in the process of working on the
new ZFILER version 1.1, which includes
the language overlay implementation, I
thought of a couple of additional points.
Second, Al Hawley sent me some very
interesting comments, and he built on
my ideas for use in the new version of
BYE that he is writing. [BYE is the
resident program that is used to imple-
ment what is called a ‘“‘remote access
system’’, a computer system that can be
operated by a remote user via modem or
direct connection to a serial port.]

An Addition to the Module Header

In the version of the text message (i.c.,
Z3TXT) module I finally arrived at by
the end of the last column, there were
several items included in a header at the
beginning of the module. First, there
was an opcode of “‘RST 0, which, if
executed, would result in a warm boot.
A file containing a Z3TXT module
should never be executed, but at a cost of
one byte we could protect ourself against
that outside chance.

The header also contained the string of
characters *“Z3TXT’ followed by a null
(0) byte. Many Z-System modules in-
clude such identifiers. In this category
are resident command packages (RCPs),
flow command packages (FCPs), and
environment descriptor modules
(Z3ENVs). Programs, such as Bridger
Mitchell’s excellent JETLDR.COM, that
load these modules from files into
memory can use the ID string to validate

The Computer Journal / #58

the file, that is, to make sure that it is the
kind of module that the user has stated
it to be. User mistakes and damaged
files can thus be detected. Some mod-
ules, however, such as named directory
registers (NDRs) and terminal capabil-
ity descriptors (Z3Ts), do not have such
ID strings; they probably should have.

The next header item I included was the
name of the program for which the
Z3TXT file contains message text. Load-
ing a text overlay intended for one pro-
gram into a different program would
probably not produce very satisfactory
results <grin>. By including the pro-
gram name in the header, a loader utility
-- the equivalent of JETLDR -- would be
able to catch such an error. Even if it
didn’t outright refuse to load the mod-
ule, it could at least point out the pos-
sible problem to the user and ask for
confirmation of the command.

The last item in the header I proposed
was a three-letter language identifier.
This would ensure proper identification
of the language contained in an overlay
module. This could hetp a user who
could not otherwise identify the language
with certainly, and it might also be of
use to a loader utility.

There was one very important item that
[omitted; the size of the module. If the
loader cannot determine how much space
has been allocated for the text module, it
might end up installing a module that
was too large. This would probably re-
sult in some executable code being over-
written. Again, the user would probably
be quite disappointed by the results! This
happened to me while I was working on
ZFILER. T don’t know if Al Hawley
suffered any such accidents or whether
he was just smart, but his list of sugges-

tions to me included such an item for the
header. The header, thus, now stands as
follows:

rst 0
db ‘Z3TXT’,0 ; null-terminated ID
B 12345678 ; must be 8 characters,
db ‘PROGNAME’ ; pad with spaces
; 123 ; must be 3 characters
db ‘ENG’ ; name of language

dw LENGTH ; length of module

The use of this length byte is somewhat
tricky. When the program code is as-
sembled, the messages for some language
have to be included directly in the source
code. In that case, the length word should
contain the amount of space allocated in
the program for the text overlay, not the
amount of space actually used. It would
probably be defined using an EQU di-
rective in the source code.

On the other hand, when modules are
assembled as independent overlays, the
length word should contain the actual
length of the module. Then, when the
loader utility attempts to load a language
overlay into a program’s COM file, it
could compare the length word in the
overlay to the length word in the COM
file to make sure that the new overlay
will fit properly.

Here is the trickiest part. The loader
must remember the original value of the
length from the COM file and reinstall
that value after the new language over-
lay has been installed. In other words,
the length word in the header serves two
distinct purposes: in a free-standing over-
lay file it represents the space needed for
the module; once installed into a COM
file it represents the space available for
the module.

New Data in the Text Module

In my examples last time, the Z3TXT
module contained only null-terminated
text strings. While working on the text
module for ZFILER, I realized that one
might wish to include some other types
of data. Al Hawley also showed me an
additional way to handle the address table
and data. I will now describe both of
these extensions.

In ZFILER, as in many other programs,
users are occasionally prompted with a
question that requires a yes or no an-
swer. In the past, the answer has been
given by pressing either the ‘Y’ key or
the ““N”* key. This is all well and good
for English speakers, but other languages
may use different words represented by
different letters. (Interestingly enough,
though the word for “‘no’ varies, the
first letter is nearly universally *“N’’ for
European languages; ‘“Y”’, on the other
hand, will often not fit the bill.)

I wanted to fix this in ZFILER, so I
decided to put the two letters represent-
ing an affirmative and a negative answer
into the text overlay and to have the code
compare the user’s response to the vari-
able characters stored there. Recall the
complete structure of the module as I
proposed it last time. Between the header
and the actual message strings was a
table of address offsets to the text strings.
The appearance was thus as follows:

23txt: ; start of module
; header goes here (see above)

; table of address offsets
msgl: dw .msgl - z3txt
msg2: dw .msg2 - z3txt

; actual message strings

Since the length of the ““yes” and *‘no”’
characters is fixed, namely one charac-
ter, there is no need to use indirect ad-
dressing as with the variable-length
message strings. The letters can be put
directly into the address-offset table. It
might then have the following appear-
ance:

. table of address offsets and
; ..fixed-length data
affirm: db ‘Y’

negate: db ‘N’
msgl: dw amsgl - 23txt
msg2: dw .msg2 - 23txt

In Al Hawley’s new version of BYE for
Z-Systems (called NZBYE) there are
places where one wants the code to
modify a string dynamically. For ex-
ample, there might be a message of the
form, ‘“You have 7 minutes remaining.”’
This message might be displayed each
minute once the user has fewer than 10
minutes of allowed access remaining for
the current call. Here is how Al sets up
the module.

: table of address offsets

timmsg: dw Atimmsg - z3txt
timval: dw timval - z3txt
msg2: dw .msg2 - Z3txt

; actual message strings
db ¢ minutes remaining’cr1f,0

The table values stored at the addresses
labeled “timmsg’’ and ‘‘msg2’’ point to
the beginnings of complete message
strings (at addresses ‘‘.timmsg’’ and
‘.msg2’’). Those messages would be
displayed as I described last time using
a special string-printing subroutine. In
Al’s extension, the address at label
“timval’” would be used differently. A
fixed-length character string would be
computed by the program and written
into the space at label *“ timval’’, whose
address would be computed from the
table entry at “‘timval”’. A slightly more
elaborate version of such a subroutine is
presented later in this column.

Alexander Schmid and I faced a similar
problem in ZFILER but handled it dif-
ferently. We broke the strings into sepa-
rate pieces. Sticking with the above
example, we would have:

; table of address offsets

timmsg: dw timmsg - z3txt
timmsg2: dw timmsg?2 - 23txt
msg2: dw msg2 - 23txt

; actual message strings

In the program code, the two pieces of

the message would be printed separately,
each by a call to the message-printing
subroutine. The time value would be
sent to the terminal in between those two
calls. Itis not clear to me which method
is best. The second approach has an
extra null byte at the end of the first
message string, and the display subrou-
tine has to be called an extra time. On
the other hand, with Al's method, the
address has to be calculated and the
computed value has to be stored into the
message string instead of just sending it
directly to the screen. My feeling is that
the two methods are so nearly equal in
efficiency that the choice should be made
based on one’s programming style pref-
erence.

Some Additional Points

Al Hawley was still not completely sat-
isfied with the storage efficiently in the
text module. Remember that last time
we began with an approach in which
each individual message started at a fixed
address, with extra space included with
each one to allow for longer messages in
another language. Then we added the
address-offset table -- with all entries in
fixed locations -- so that the messages
could be of different lengths without
having to waste expansion space for each
one.

With this approach, however, one stitl
has to allocate some overall extra space
in case the complete collection of mes-
sages in another language is longer.
Consequently, space is wasted in the
COM file when a shorter language over-
lay is loaded. This bothered Al.

I had thought about this, too, and had
concluded that there really was nothing
one could reasonably do about it. If the
Z3TXT module could be placed at the
end of the COM file, then its length
could be variable. However, programs
generally store data after the end of the
material stored in the COM file. If the
Z3TXT module were appended, then the
code would have to provide indirect ad-
dressing for all data references, with the
addresses depending on the length of the
currently loaded Z3TXT module.

This approach would also cause prob-

The Computer Journal / #58

lems with type-4 programs. These are
programs whose load-address is deter-
mined at run-time by the ZCPR34 com-
mand processor. Generally, type-4 pro-
grams are loaded as high as possible in
memory. This requires knowing how
much memory the program uses. Vari-
able-length text overlays stuck on the
. end of the COM file would greatly com-
plicate this situation.

Al Hawley’s thinking on the subject was
colored by the task he was tackling. BYE
is not a transient (temporary) program.
The COM file (BYE.COM) causes a
block of code called a resident system
extension (RSX) to be installed semi-
permanently at the top of memory under
the normal CP/M operating system code.
There it intercepts operating system calls,
changing existing functions and adding
new ones. Because it is resident, BYE
reduces the memory space available to
all other programs. Therefore, it is of
great importance to keep the code as
short as possible. To accomplish this
with NZBYE, Al came up with a very
clever idea that I will describe in just a
moment.

First I want to mention one other new
consideration that arose in connection
with NZBYE. Remember that BYE's
function is to make the modem port an
extension of the system’s console (key-
board and screen) so that the computer
can be operated either by the local opera-
tor (the sysop) or a remote caller.

Picture Al sitting at the console of his
Ladera Z-Node in Los Angeles while a
caller from France is on-line. Being an
accommodating person, Al would like
user messages sent out by BYE to appear
in French. On the other hand, there are
some messages generated by BYE that
are for the sysop only and appear only on
the local screen. These should be in
English for Al. For Helmut Jungkunz in
Germany, however, they should be in
German, even when the French caller is
using the system.

Well, the conclusion Al came to was that
NZBYE needed to break the messages
into two groups; local messages and re-
mote messages. (The remote messages
go to the local console as well. Ideally,

The Computer Journal / #38

these messages would be provided in
two languages and separate versions
would be sent to the local and remote
consoles. However, this would waste
memory by complicating the code and
increasing the space taken up by the
message text.)

Since each user of BYE has to assemble
the program anyway (because of the
choice of various options and system
characteristics), there is no reason not to
assemble in the message text as well. To
make it easy to change the messages, Al
has gathered them into one place and
put their code in a separate LIB file.
Those messages do not have to be ad-
dressed via an address-offset table; they
can be addressed directly. Conditional
assembly pseudo-ops can be included so
that when certain optional functions are
omitted from the BYE code, the corre-
sponding messages can be omitted as
well.

The remote messages have to be loaded
dynamically depending on the caller.
They could be handled as we have de-
scribed for standard programs, but then
one would have to pre-allocate enough
space to accommodate the longest set of
messages for all supported languages.
Al conceived the following approach.

The remote message text is not stored in
BYE at all; it is stored in a separate RSX
that is loaded after (underneath) BYE.
As a result, its size can vary. Hereis a
more detailed description of what hap-
pens. When BYE.COM is run, it has to
deal with two tasks. As before, it has to
make sure that the BYE RSX is loaded,
installing it in upper memory if it is not
already present. Then it has to make
sure that the correct language RSX is
loaded. If BYE.COM has just loaded
the BYE RSX, then it has to load the
required language module, too. If BYE
was already present in memory, then
BYE.COM has to remove the old lan-
guage RSX and then install the one now
required. (It could try to determine if the
right one is already installed, but it may
be easier to just dump the old one and
start over.)

There is now on¢ new complication.
With our Z3TXT modules, the main code

does not know where the actual message
strings are stored, but it does know where
the address-offset table is stored. This
may not be the case with the BYE RSX.
We could change the structure of the
language RSX, placing the address off-
set table at the end of the module. This
would be a fixed address relative to the
BYE RSX code, and the address could
be adjusted just as all other addresses are
adjusted when a relocatable module, such
as an RSX, is loaded. However, one
would like to maintain compatibility and
minimize the proliferation of standards.

In order to use the same module struc-
ture, Al added an extra level of address
indirection. Since BYE.COM handles
the installation of both RSXs, it has the
global picture and can provide the BYE
RSX with the address at which the lan-
guage RSX begins. This address isloaded
into a specific data word in the BYE
RSX. Here is what Al’s double-indirec-
tion implementation looks like.

Suppose the language RSX is to contain
the messages “‘msgl’’ and *‘msg2’’ that
we showed in the earlier examples. An
RSX contains some additional header
code for intercepting operating system
calls, for protecting itself (so it does not
get removed during warm boots), for
identifying itself, and for removing itself
from memory. The remainder of the
RSX will look just like the Z3TXT mod-
ules used for other programs. The start-
ing address of that code (‘‘z3txt™’) is
what BYE.COM will store at, say, the
label “‘byerem’” in the BYE RSX code.

Al uses a subroutine to compute the real
addresses of the messages through two
levels of indirection. This sounds more
complicated than it really is; I hope you
will try to follow it. When the routine is
called, the HL register pair has been set
to the relative position (or offset) in the
Z3TXT address-offset table for the de-
sired message (or other data structure).
For example, in the case of the first
message, this value would be (msgl-
z3txt). Although the individual values
of “msgl’” and “‘z3txt” will vary de-
pending on where the language RSX is
loaded in memory, the difference is a
constant that is known at the time BYE
is assembled. Since ‘“msgl’’ is the first

message in the table, the value would be
20 (the length of the Z3TXT module
header). The second message would
have the value 22, and so on.

Here is the complete code for Al’s sub-
routine, called GETM2. The value of
the offset to the offset in HL is converted

~ into the absolute address of the specified
object and returned in HL. Otherwise,
only register A is altered; if one desired,
register pair AF could be protected on
the stack as is done with DE.

push de ; save DE on stac

Id de,(byerem) ; address of z3txt
; first indirection: get absolute address where
; offset to message text is stored and load the
; value into HL.

add hi,de ; real address of offset
Id a,(hl) ; get low byte into A
inc hl ; point to high byte

Id h,(hl) ; get high byte into H
Id lLa ; get low byte into L.

; second indirection: given offset in HL, calculate
; actual address of the message text in Z3TXT
module.

add hl,de

pop de ; restore DE

Plans for Future Columns

In two issues, TCJ will be marking its
10th anniversary. At the request of the
editor, for that issue I will be revisiting
the topic of getting Z-System running on
a computer that is currently running a
form of standard CP/M. The column
will be addressed to novices, but there
might be some tricks and thoughts of
interest even to veteran Z-System users.

To learn about the subject myself, I plan
to dig out one of the many Kaypros
warchoused in my basement and go
through the complete process of bring-
ing up an NZCOM Z-System on it. I
will also install Z3PLUS on one of my
CP/M-Plus computers, perhaps the
Televideo 803, on which I currently have
CP/M-2.2 and NZCOM but for which I
believe I have a CP/M-Plus boot disk as
well.

For next time I hope to describe some
advanced uses of the PMATE/ZMATE
text editor. MATE is generally used
manually to edit files, but it can also be
used as a generalized, programmable
text-processing tool. I have installed a
special permanent macro that greatly

10

facilitates this kind of use.

For example, on my 486/33 PC at work
I have been running many long series of
automated simulations of electronic cir-
cuits using PSPICE. A 4DOS batch file
starts the process by writing out a file
with the circuit parameters (for example,
capacitor values, voltage levels, clock
rise and fall times). It then invokes
PSPICE and feeds the output file to
PMATE, which uses a macro to analyze
the data and determine whether or not
the circuit operated as desired. This
macro is stored in a separate file (or
files, if there are subroutine macros).
The results of the evaluation are written
out in files that are then read by the
4DOS batch file and used to generate the
next set of simulation parameters. In
this way, I can leave the computer run-
ning unattended for days or even weeks,
and when I come back there is a nice
report awaiting me with a summary of
the results. Readers may be able to think
of many uses for this approach.

Language Independence is a big prob-
lem. While checking on new versions of
Novell's Netlite, 1 discoverd they have a

~ separate version for each language. It

solved the problem but at a price in
programming time and stocking differ-
ent versions. Jay's ideas sure make more
sense and like Al Hawley's concept of
needing different languages for differ-
ent sections. From a maintenance stand
point, by having different modules you
could load them on the fly, that would
allow english speaking support people
to work at a site that normally uses an-
other language.

I am sure there are many other options
fo this problem. If you have one, or
Jound some "slick” way of enhancing
Jay's work, let Jay know.

Contact Jay on GENIE as JAY.SAGE
or see his add on the inside cover for
other options. BDK.

In Issue #59

- Programming the 6526 Com-
munications Adapter. This in-

{] depth article shows how to ap-
- || proach and program the adapter
~{Jin BASIC. A great review and

startup articles for those wanting

1lto learn the insides of a com-

puter.

- D/A Conversion on the Cheap.
This is part two of a series on
how to generate analog signals

|Jusing a few resisters and an op-

amp. Programming support us-

' ||ing Forth and any parallel port

makes this one of our platform
independent projects.

- Real Computing tackles losing

1] the "Superblock" on a MINIX disk

system.

- Z-System covers PMATE, one
of Jay's favorite programs.

- More articles on S-100 and
Kaypros as well.

Support Requests

To request support or assistance
on a given project, please write
our support people directly. TCJ's
Technical Editors place their
address in their columns so that
you can get faster response by
writing to them directly. Your

{] requests will be included in later

articles. Our editors reserve the
right to refuse service or redirect
you to a more appropriate source.
Please include as much back-

|| ground information as possible.

Contacting TCJ
Mail:
TCJ
P.O. Box 535
Lincoln, CA 95648

On GENIE:
B.Kibler

The Computer Journal / #58

Real Computing

By Rick Rodman

32.Bit Systems .

. AllReaders |
'MINIX, UZI and GNU

Minix, Uzi, Gnu - and lessons from
home movies

Minix goings-on

Many Minix OS hobbyists have changed
over to Linux, for two reasons; first,
there are no restrictions to worry about,
and second, Linus Torvalds, the author,
is in favor of it becoming a big, complex
operating system.

The Minix community has been revi-
talized by a sudden new burst of activity,
however. A gentleman named Frans
Meulenbrocks proposed that the Minix
kernel be rewritten as a clean
microkernel design. As Andy
Tanenbaum pointed out with respect to
Linux, the microkernel type of OS de-
sign has been almost universally ac-
claimed as superior, and most new oper-
ating systems use that design. While
Minix started out as a microkernel, the
severe design constraints of the Intel 8086
architecture compromised it to the point
that most advantages of a microkernel
were lost. The new design discussion
has basically centered around building
a true microkernel design while still
retaining as much as possible of Minix.

In a true microkernel, the protected ker-
nel of the operating system does task
switching and message passing only.
Device drivers and other service tasks
run as user-level tasks.

Frans introduced his proposals in an essay
entitled ‘‘Proposal to restructure
MINIX". Here are a few excerpts.

*‘Minix as it is now is quite cumbersome
if you want to add new tasks. You have
to change NR_TASKS, table.c, add the
new task, recompile fs/mm/kernel/tools

The Computer Journat / #58

(they all depend on the include file which
defines NR_TASKS). Quite a job.

““This way it is quite complicated to add/
remove drivers. Furthermore it is dif-
ficult to understand how the system
works.

“My idea is to restructure the kernel
into a number of different processes.
Each process corresponds with a kernel
task (e.g. the floppy driver). None of
them accesses variables from other task
(low coupling),

““To support this, there is a microkernel
(further on called core, to avoid confu-
sion with the current kernel) mainly
consisting of system.c and proc.c (and
perhaps a part of main.c).

““This core should have the following
functions:

- context switching

- message passing

- basic clock handling

- memoty copying between tasks

- support for interrupt handling

- creation and removal of processes.

“Functions supplied by the core itself
are:

- the functions from system.c and proc.c
- install interrupt handler

- deinstall interrupt handler

- attach to major device number (this
way device numbers can be connected
to drivers). This can simply be the map-
ping of the device number to the task id.

“If we identify tasks by a bit in their
proc struct and make them standalone, it
is very easy to add a new task to the
system or remove one. Of course only
the super user can do so (by means of a

new system call). An implementation of
this could be done stepwise by:

- introducing task and driver bits in the
proc struct. perhaps also a bit must be
reserved to identify the idle task.

- rewrite the macros in proc.h to use
these driver bits instcad of the
NR _TASKS.

- rewrite the code which uses things like
END_TASK_ADDR.

- allow message passing between all
drivers.

- take a simple driver and rewrite it so
that it is stand alone compilable (so it
uses the sys_copy system call instead of
directly calling phys_copy and umap).
The printer or the memory task seems
a good candidate for this.

- add a way to attach/detach an interrupt
routine to an interrupt source

- add a way to attach/detach to a major
device number

- add a system call which lets a program
start as task or server.

- remove the rewritten driver from the
system and start it using the new system
call

- add code to the build process to load
standalone drivers on boot time

- rework the other drivers, taking them
out of the kernel one at a time

- clean up the remaining kernel (which
should mainly be system.c proc.c and
some hulp [sic] code).”

There have been many related discus-
sions on Minix” message system, which
is quite cumbersome due to the six mes-
sage formats. Some have suggested us-
ing variable-length messages. Of inter-
est is the intent to keep Minix’ size small
and manageable - in fact, to make its
kernel even smaller and simpler than it
is today. Even Andy Tanenbaum, the
author of Minix, contributed to the dis-

1

cussion in a positive way. While Minix
1.6 will be released soon as an incre-
mental improvement over 1.5, it’s good
to see that the community has rediscov-
ered a technical vision for Minix’ future
- asimple but extensible operating sys-
tem that can be completely understood

. and extended in meaningful ways by a
single individual.

Recently published on Usenet was a syn-
tax guide for the PC MINIX assembler.
This assembler doesn’t follow the ar-
cane and stultified ‘‘structure’ conven-
tions of Intel’s and Microsoft’s assem-
blers. Nor does it follow the more nor-
mal but still quirky conventions of the
CP/M-86 assembler. Instead, it follows
those of IBM’s PC/IX assembler. ‘Aha!
Of course!”’ I hear you all saying. Well,
for those of you who have been on the
other side of the planet from such earth-
shaking products as PC/IX (like me) and
don’t know that syntax like the back of
your hand, send me a quick note and I'll
send you a copy. It’s too lengthy to print
in this column.

Uzi

Another free operating system is Uz,
developed by Doug Braun for the Z-80
processor. Written in C, it is a fairly
" complete Unix Version 7 clone - in a
little over 6,000 lines of code. Although
it’s a monolithic kernel design, it’s pretty
small. It takes 32K bytes of RAM for the
kernel itself on the Z-80. I've been
thinking about porting it to the NS32
processor - and putting it in PROM.

Gnu tools under 0S/2

GCC, the Gnu C Compiler, and G-Plus,
the Gnu C++translator, have been ported
t0 0S/2 2.0. Some folks have been using
them for code development. This is a
rocky road to travel down, but the prod-
uct is free (at least if you have ftp ac-
cess). Interestingly, the 32-bit linker
(LINK386) and the Resource Compiler
(RC) are supplied with the operating
system, so all you need is the compiler
itself. I don’t have copies of this soft-
ware yet, but 'm looking to acquire
them shortly. Other Gnu tools, such as
Gawk (Gnu AWK), Bison, and Gnu

12

Emacs are being ported and will be
available shortly.

I mentioned last time that IBM presently
offers only C for OS/2 2.0. There are
other compilers which can generate 32-
bit code for the system, notably Watcom
C, Microway’s Fortran, and Logitech
Modula-2. IBM also provides a strange
programming environment which works
with C, called System Object Model
(SOM). It’s heavily into object-oriented
mumbo-jumbo. In response to much
hue and cry, IBM has promised to re-
lease a C++ compiler ““soon’’. Person-
ally, I don’t care. C lets me do what 1
need to do.

Programming is the art of effectively
expressing algorithms in a form com-
prehensible to both machines and hu-
mans. That language which does so most
efficiently for a specific class of prob-
lems is the best for that class. In my
investigations so far, object-oriented pro-
gramming languages I’ve looked at have
failed to either generate efficient code or
express algorithms clearly. The indus-
try will probably never make a transition
to OOP, but OOP may be more than a
fad nonetheless; it may be an incremen-
tal step to the next technology.

Remember home movies?

You know, Super 8 and Standard 87
They were big once. They had full color,
slow-motion, sound, and zoom. What
happened to it all? It disappeared over-
night. Video equipment blew it away -
even faster than the video proponents
themselves expected.

OK, in retrospect, we can say that the
technology was lousy. You only got
about 3-1/2 minutes per roll of film. You
had to wait for it to be developed. Espe-
cially with Standard-8, you could mess
up and lose the whole roll trying to un-
load the film,

The lesson we learn from the rapid de-
mise of home movies is that people will
dump a technology almost instantly when
something better comes along - espe-

cially one that addresses their long-ig-
nored frustrations and problems.

In TCJ #57, 1 discussed some technology
fads I expect real soon. Some folks have
pointed out that I forgot to mention still
video. Still photography has terrible tech-
nology problems - the same ones as
home movies, in fact. I've mentioned
losing whole rolls of film due to camera
jams, for example, to other photogra-
phers, and been surprised to hear that
even professional photographers have
these problems. Besides, the insurance
industry is adopting still video like mad.
With a video digitizer boards, the photos
can be centrally stored on computers and
made available via LANS.

Based on the lessons learned from the
home movie to VCR transition, some
have predicted that still video will com-
pletely eradicate film even while the cost
is higher.

Personally, I don’t think so. The cost is
still way too high for the full suite of
necessary equipment - don’t forget,
you’ve got to include printing hardware.
Also, the resolution still isn’t too good.
The day when Hasselblads sit unsold on
flea-market tables at giveaway prices is
still a couple of years off.

Nevertheless, this may be the best time
for technical folks to familiarize them-
selves with the technology. With indus-
try and government moving away from
film so rapidly, there will be lots of
opportunities in file conversion, view-
ing/cataloging software, and suchlike.
One nice thing coming out of the imag-
ing technology drive is the move to SCSI
as a standard I/O interface. Most high-
end color printers, for example, have
SCSI interfaces, as do most of the new
scanners coming out.

Next time

Push the edge of the envelope with us as
we try to fix corrupted Minix filesystems,
using only our bare hands, the ROM
monitor, and RDMINIX tools under
DOS. Where else but in computers

The Computer Journal / #58

would something so fragile be called a
““superblock’*?

Where to call or write:

BBS or Fax: 1-703-330-9049 (There’s
an autoswitch feature in the fax ma-
chine; strange though this seems, it
appears to work just fine.)

Here is a brief synopis of the MINIX assembly language. It is the
same as IBM’s PC/IX assembler.

2. TOKENS

21 Numbers

Same as C

22 Character Constants
Same as C, supporting \n, \t, \b, \r &\f
23 Strings

Sameas C

2.4 Symbols

May contain any letter, digit, **.”*, **~"" or **
a digit or **~"" as the first character.

>, but cannot have

All global names have 8 significant characters

The names of the 8086 registers are reserved ({abed](xlh], [cdes]s,
{ds]i, [sp]p, bx_{ds}i & bp_[dsli). The last two forms indicate
register pairs; these names are used in the ‘“base + index’”
addressing mode (section 6.1).

Names of instructions and pseudo-ops are not reserved.
Alphabetic characters in opcodes and pseudo-ops must be in
lower case.

25 Separators

Commas, blanks, and tabs are tors and can be int d
freely between tokens, but not within tokens (except string and
character constants) or between the tokens of an expression.
Commas are only legal between operands.

2.6 Comments
The command characteris *‘|>”.

2.7 Opcodes

Listed below.

Notes:

1) Different names for the same instruction are separated by **/*".
2) Brackets ([]) indicate that 0 or 1 of the enclosed characters can
be included.

3) Curly braces ({}) work similarly, except that one of the
enclosed characters must be included.

271 Data Transfer

2711 General Purpose

movl[b] dest, source | Move word/byte
mov{bw} dest,source | Move word/byte from source to dest
pop dest | Pop stack
push source | Push stack
xchg opl,op2 | Exchange word/byte
xlat | Translate

2712 input/Output

in[w} source | Input from source IO port
in{w] | Input from DX /O port
out{w] dest | Qutput to dest VO port
out[w} | Output to DX I/O port
2713 Address Object
Ids reg,source | Load reg and DS from source
les reg,source | Load reg and ES from source
lea reg,source | Load effect address of source to reg
|and DS
seg reg | Specify seg reigster for next
| instruction

2714 Flag Transfer

lahf | Load AH from flag register

popf | Pop flags

pushf | Push flags

sahf | Store AH in flag register
272 Anthimetic

2721 Addition
aaa | Adjust result of BCD addition
add[b] destsource | Add

The Computer Journal / #58

adefb] dest,source | Add with carry
daa | Decimal Adjust acc after addition

inc[b] dest | Increment by 1
2722 Subtraction
aas | Adjust result of BCD subtraction

sub[b} dest,source | Subtract
sbb[b] dest,source | Subtract with borrow from dest

das | Decimal adjust after subtraction
dec[b] dest | Decrement by one
neg(b] dest | Negate

emplb] destsource | Compare
cmp{bw) destsource | Compare

2723 Multiplication
aam | Adjust result of BCD multiply

mmulfb] source | Signed multiply
mullb] source | Unsigned multiply

2724 Division
aad | Adjust AX for BCD divison
chw | Sign extend AL into AH
cwb | Sign extend AX into DX
idiv[b] source | Signed divide
div[b] source | Unsigned divide

273 Bit Manipulation

2731 Logical
and{b] destsource |Logical and
not{b} dest { Logical not
or(b) dest,source | Logical inclusive or
test[b] dest,source | Logical test
xor{b} destsource | Logical exclusive or

2732 Shift
sal[byshi[b] destCL | Shift logical left

sar{b) dest,CL | Shift arithmetic right
shr(b] dest,CL | Shift logical right
2733 Rotate
rel{b] dest,CL | Rotate left, with carry
rer{b) dest,CL | Rotate night, with carry
rol[b} dest,CL | Rotate left
ror{b] dest,CL | Rotate right
274 String Manipulation
The following instructions address source strings through Sl and
dest string through DI
cmp(b] | Compare
cmp{bw} | Compare
lod{bw} | Load into AL or AX
mov(b] { Move
mov{bw} | Move
1ep | Repeat next instruction until CX=0

repe/repz | Repeat next instruction until CX=0 and ZF=1
repne/repnz | Repeat next instruction until CX!=0 and ZF=0
sca{bw} | Compare string element ds:di with AL/AX
sto{bw} | Store AL/AXin ds:di

275 Control Transfer

stplacement is indicated by opcode; **jmp’” generates a 16-bit
displ t, and *)"" g tes 8 bits only. The provision for
“far”” labels is descnbed below.

As accepts a number of special branch opeodes, all of which begin
with **b”". These are meant to overcome the range limitations of
the conditional branches, which can only reach to targets within -
126 to +129 bytes of the branch (*‘near’” labels). The special **b”
instructions allow the target to be anywhere in the 64K-byte
address space. If the target is close enough, a simple conditional
branch is used. Otherwise, the assmebler automatically changes
the instruction into a conditional branch around a *“jmp””.

The English translation of the opcodes should be obvious, with
the possible exception of the unsigned operations where ““lo”

means ‘‘lower’”, “*hi"’ means ‘*higher™”, and *‘s’” means **or
same’’,

The “‘call”, “_m'p and “‘ret”’ i.nstructlons can be either
ir t or t. The gment versions are
indicated with the suﬂix “p

27.5.1 Unconditional

br dest | jurnp, 16-bit displacement, to dest
j dest | jump, 8-bit displacement, to dest
call[i} dest | call procedure
jmp(i) dest | jurnp, 16-bit displacement, to dest
ret{i] | return from procedure

2752 Conditional with 16-bit Displacement

beq | branch if equal

bge | branch if greater or equal (signed)
bgt | branch if greater (signed)

bho | branch if higher (unsigned)

bhis | branch if higher or sarne (unsigned)
ble | branch if less or equal (signed)

bit | branch if less (signed)

blo | branch if lower (unsigned)
blos | branch if lower or same (unsigned)
bne { branch if not equal

2753 Conditional with 8-bit Displacement
ja/inbe | if above/not below or equal (unsigned)
jae/jnb/jnc | if above or equal/not below/not carry (unsigned)
jblinae/ic |if not above nor equal/below/carry (unsigned)

jbeljna } if below or equalinot above (unsigned)
jg/inle | if greater/not less nor equal (signed)
jge/inl | if greater or equal/not less (signed)
jVinge | if less/not greater nor equal (signed)
Jlefjgl | if less or equal/not greater (signed)
jeljz | if equal/zero

jnefjnz | if not equal/not zero
jno | if overflow not set
jo jif overflow set

jnp/jpo | if parity not set/parity odd

Jplipe | if parity set/parity even

jns { if sign not set
38 | if sign set

2754 Iteration Control
jexz dest | jumpifCX =0
loop dest | Decrement CX and jump if CX 1=0

loope/loopz dest | Decrement CX and jump if CX=0and ZF =1
loopne/loopnz dest |[Decrement CX and jump if CX!=0 and ZF=0

2755 Interrupt

int | Software interrupt
into | Interrupt if overflow set
iret | Retun from interrupt
2.76 Processor Control
2.76.1 Flag Operations
cle | Clear carry flag
cld | Clear direction flag
cli | Clear interrupt enable flag
cme | Complement carry flag
ste | Set canry flag
std | Set direction flag
sti | Set interrupt enable flag

2.762 Extemal Synchronisation

esc source | Put contents of source on data bus
hit | Halt until interrupt or reset

lock | Lock bus during next instruction
wait | Wait while TEST line not active

3. THE LOCATION COUNTER, SEGMENTS AND LABELS

31 Location Counter

The special symbol ¢*.>* is the location counter and its value is the
address of the first byte if the instruction in which the symbol
appears and can be used in expressions.

32 Segments

There are three different segments: text, data and bss. The current
segment is selected using the text, .data or .bss pseudo-ops. Note
that the **.”* symbol refers to the location in the current segment.

33 Labels

There are two types: name and numeric. Name labels consist of a
name followed by a colon (). Numeric labels consist of one or
more digits foliowed by a dollar (**$"). Numeric labels are useful
because their definition disappears as soon as a name label is
encountered; thus nurneric labels can be reused as temporary local
labels.

4. STATEMENT SYNTAX
Each line consists of a single statement.

41 Null Statments
Contain neither an assembler command nor a pseudo-op. May
contain a label or comment.

42 Instruction Statements

label: opcode operandl, operand2 | comment
43 Pseudo-op Statements

An assembler instruction, see below.

5. EXPRESSIONS
51 Expression Syntax
52 Expression Semantics

The following operator can be used: + - * / & ! < (shift left) > (shift
right) - (unary minus)\ (unary complement). 32 bit integer
arithmetic is used. Division produces a truncated quotient.

6 OPERAND SYNTAX

6.1 Addressing Modes

8-bit constant mov ax, *2
16-bit constant mov ax, #12345
direct access (16 bits) mov ax, counter
register mov ax, si
index mov ax, (si)

13

index + 8-bit disp. mov ax, *-6(bp)

index + 16-bit disp. mov ax, #400(bp)
base + index mov ax, (bp_si)

base + index + 8-bit disp. mov ax, *14(bp_si)
base + index + 16-bit disp.mov ax, #-1000(bp_si)

Any of the constants or symbols may be replacement by
expressions. Direct access, 16-bit constants and displacements
may be any type of expression. However, 8-bit constants and
displ ts must be absol Floating point

1 that explicity refe rthc floating point register stack
do so by specifying stack offsets:
fadd 0,3 | Add fourth to top
fxch 2 } Exchange second and top elements

Arithmetic instructions must have two operands as in the
example. Other instructions have only one. Floating point
arithmetic instructions that mimic a stack machine can be
coded with no operands. For example

fadd
faddp 1,0 as the same.
6.2 Call and Jmp

With the ““call’” and **jmp’" instructions, the operand syntax
shows whether the call or jump is direct or indirect; indirection is
indicated with an *‘@’” before the operand.

call _routine | Direct, intrasegment
call @subloc | Indirect, intrasegment
call @6(bp) | Indirect, intrasegment
call ®x) | Direct, intrasegrment
call @bx) | Indirect, intrasegment
calli @subloc | Indirect, intersegment
calli cseg, offs | Direct, intersegment

Note that call (bx) is considered direct, though the register isn’t
called, but rather the location whose address is in the register.
With the indirect version, the register points to a location which
contains the location of the routine being called.

1. PSEUDO-OPS

71 Assigment

Either using the symbol as a label when it is set to **.” for the
current segment with type relocatable. Or via symbol =
expression when symbol is assigned the value and type of its
arguments.

72 Jong, word and .byte

These commands take one or more operands, and for each
generate a value whose size is a long (4 bytes), word (2 bytes) or a
byte.

73 .ascit and .asciz

These commands take one string argument and generate the
ASCII character codes for the letters in the string. asciz
automaticalty terminates the string with a null (0) byte (a C

* string?).

7.4 2e10W
.zerow take one argument and generates that number of zero
words

75 .even
.even generates a null byte is the location counter is odd, thus
making it even.

76 text, .data and .bss

These three commands select the current segment. The assembler
always begins in the .text segment. No code can be assembled in
the .bss segment.

77 globl

globl declares that each of its operands, which must be names, are
globally visible across all files of the program. The names need
not be defined in the current file, but if they are, their type and
value arise from that definition independently of the globl
declaration.

78 comm

.comm declares storage that can be common to more than one
module. There are two arguments: a name and an absolute
expression giving the size in bytes of the area named by the
symbol. The type of the symbol becomes extemal. The statement
can appear in any segment.

Kevin J. Duling UNIX
kduling@nmsu.edu
New Mexico State University VM/CMS

oprkjd@nmsuvm] nmsu.edu
Computer Center/Small Systems ~ VMS
CC4831(@helen nmsu.edu

B T

14

Since Rick mentioned UZI for the 280, I found it
on GENIE (in CPM section) and have included
the introduction section just so you know exactly
what it can and can not do. BDK

UZI: UNIX Z-80 IMPLEMENTATION
Written by Douglas Braun

Introduction:

UZI is an implementation of the Unix kernel
written for a Z-80 based computer. It implementts
almost all of the functionality of the 7th Edition
Unix kemel. UZI was written to run on one
specific collection of custom-built hardware, but
since it can easily have device drivers added to i,
and it does not use any memory management
hardware, it should be possible to port it to
numerous computers that current use the CP/M
operating system. The source code is written
mostly in C, and was compiled with The Code
Works” Q/C compiler. UZI’s code was written
from scratch, and contains no AT&T code, so it is
not subject to any of AT&T’s copyright or
licensing restrictions. Numerous 7th Edition
programs have been ported to UZI with little or no
difficulty, including the complete Bourne shell, ed,
sed, dc, cpp, etc.

How it works:

Since there is no standard memory management
hardware on 8080-family computers, UZI uses
““total swapping’’ to achieve multiprocessing. This
has two implications: First, UZI requires a
reasonably fast hard disk. Second, there is no point
in running a different process while a process is
waiting for disk VO. This simplifies the design of
the block device drivers, since they do not have to
be interrupt-based. UZI itself occupies the upper
32K of memory, and the currently running process
occupies the lower 32K. Since UZI currently
barely fits in 32K, a full 64K of RAM is necessary.

UZI does need some additional hardware support.
First, there must be some sort of clock or timer that
can provide a periodic interrupt. Also, the current
implementation uses an additional real-time clock
to get the time for file timestamps, etc. The current
TTY driver assumes an interrupt-driven keyboard,
which should exist on most systems. The
distribution contains code for hard and floppy disk
drivers, but since these were written for custom
hardware, they are provided only as templates to
write new ones.

How UZl is different than real Unix:

UZI implements almost all of the 7th Edition
functionality. All file I/O, directories, mountable
file systems, user and group IDs, pipes, and
applicable device 1/O are supported. Process
control (fork(), execve(), signal(), kill(), pause(),
alarm(), and wait()) are fully supported. The
number of processes is limited only by the swap
space available. As mentioned above, UZI
implements Unix well enough to run the Bourne
shell in its full functionality. The only changes
made to the shell’s source code were to satisfy the
limitations of the C compiler.

Here is a (possibly incomplete) list of missing
features and limitations: The debugger- and
profiler-related system calls do not exist.The old
6th edition seek() was implemented, instead of

Iseek(). The supplied TTY- driver is bare-bones. It
supports only one port, and most IOCTLs are not
supported. Inode numbers are only 16-bit, so
filesystems are 32 Meg or less. File dates are not in
the standard format. Instead they look like those
used by MS-DOS. The 4.2BSD execve() was
implemented. Additional flavors of exec() are
supported by the library. The format of the device
driver switch table is unlike that of the 7th Edition.
The necessary semaphores and locking
mechanisms 1o implement reentrant disk 1/O are
not there. This would make it harder to implement
interrupt-driven disk /O without busy-waiting.

Miscellaneous Notes:

UZI was compiled with the Code Works Q/C C
compiler and the Microsoft M80 assembler under
the CP/M operating system, on the same hardware
it runs on. Also used was a version of cpp ported
to CP/M, since the Q/C compiler does not handle
macros with arguments. However, there are only a
couple of these in the code, and they could easily
be removed.

Because UZI occupies the upper 32K of memory,
the standard L80 linker could not be used to link it.
Instead, a homebrew L80 replacement linker was
used. This generated a 64K-byte CP/M .COM file,
which has the lower 32K pruned by the CP/M PIP
utility. This is the reason for appearance of the
string ‘*‘MOMBASSA’’ in filler.mac and
loadunix.sub.

To boot UZI, a short CP/M program was run that
reads in the UZI image, copies it to the upper 32K
of memory, and jumps to its start address. Other
CP/M programs were written to build, inspect, and
check UZI filesystems under CP/M. These made it
possible to have a root file system made before
starting up UZI. If the demand exists, these
programs can be included in another release.

Running programs under UZI:

A number of 7th Edition, System V, and 4.2BSD
programs were ported to UZI. Most notably, the
Bourne shell and ed run fine under UZI In
addition the 4.2BSD stdio library was also ported.
This, along with the Code Works Q/C library and
miscellaneous System V library functions, was
used when porting programs.

Due to obvious legal reasons, the source or
executables for most of these programs cannot be
released. However, some kernel-dependent
programs such as ps and fsck were written from
scratch and can be included in future releases.
Also, a package was created that can be linked to
CP/M .COM files that will allow them to run under
UZIL This was used to get the M80 assembler and
180 linker to run under UZI. Cpp was also ported
to UZL. However, it was not possible to fit the Q/C
compiler into 32K, so all programs (and UZI itself)
were cross-compiled under CP/M.

The Minix operating system, written for PCs by
Andrew Tanenbaum et al, contains many programs
that should compile and run under UZI. Since
Minix is much less encumbered by licensing
provisions than real Unix, it would make sense to
port Minix programs to UZI. In fact, UZI itself
could be ported to the PC, and used as a
replacement for the Minix kernel.

The Computer Journal / #58

Affordable Microprocessor Development Tools

by Tim McDonough

Embedded Systems
Beginners and Up

Programming Tools

Recently, I've received several letters
from readers asking questions about past
articles and questions in general about
working with embedded systems. I re-
ally enjoy hearing from you because it
lets me know someone out there is inter-
ested and it helps me figure out what
direction to take for future articles. At
the end of this article, I've listed several
ways that you can contact me. My pref-
erence, if you have the capability, is via
one of the two forms of electronic mail.
In most cases I answer ¢-mail the day I
receive it. Besides, it saves trees and
helps keep paper from piling up around
here.

The most frequently asked question I get
is ““Where can I get affordable develop-
ment software for the (fill in the blank)
microprocessor?’’ Affordable can mean
different things to different people. In
the case of the hobbyist or small business
it typically means the cheapest thing that
will get the job done.

There are a lot of companies that pro-
duce assemblers, compilers, and inter-
preters for various microprocessors and
microcontrollers. I'm not going to at-
tempt to list them all because I'm sure
I’d miss someone with a great product.
The tools I use are all MSDOS programs
since the PC clone is my development
platform. To my knowledge the products
mentioned below are only available for
that platform.,

A good source of reliable, solid cross-
assemblers, simulators, and
disassemblers is PseudoCorp. The Level
1 demonstration versions of many of their
cross-assemblers are available on many
BBS systems and from major shareware
vendors. I've personally used the
commercial (Level 2) 8051, 68HC11,

The Computer Journal / #58

and 8096 products. Cost is about $50
each for the Professional Level 2
Assemblers.

The PseudoCorp products were among
the first that I used. Those of you that
have followed my 8031 articles here may
recail that the program listings mention
them, They offer features such as in-
clude files, a powerful flexible macro
facility and the ability to generate seg-
mented object files for systems where
your code and/or data spans several
ROMs. In writing code for the TCJ ar-
ticles T avoided using these features to
make it as easy as possible for you to use
the software of your choosing.

Over the last few years there has been
more and more interest in using high
level languages, especially C, for em-
bedded systems development. For the
hobbyist or the small developer that
meant drooling over compilers that cost
anywhere from $800 to well over $2,000
in some cases. I don’t know what your
hobby budget is like but for most people
a $2,000 compiler is probably out of the
question,

A couple of years ago I ran across Dave
Dunfield of Dunfield Development Sys-
tems on a BBS. Dave has a remarkable
collection of microprocessor software
development tools that seems to grow
each month. His flagship products are
MICRO-C, a very portable C compiler,
and his XASM series of cross-assem-
blers. Currently his products are avail-
able for the 6800, 6801/6803, 6805, 6502,
6809, 68HC11, 8051/8052, 8080/8085/
280, 8086 and 8096 microprocessors.
Versions for the 68HC16 should be avail-

able by the time you read this.

So, just what does affordable mean?
Dunfield Development Systems sells a
package that includes ALL of the assem-
blers mentioned above with documenta-
tion on disk for $49.95 plus shipping. If
you plan to delve into multiple proces-
sors and are going to stick with assembly
language you probably won’t find a bet-
ter deal than Dave’s XASM product.

Sooner or later your projects will grow
in complexity and unless there’s an
overriding need for flat out speed you'll
probably yearn for a high level language
to use for your projects. If you like C
then Dunfield’s MICRO-C for the
processor of your choice is probably the
best bargain you're likely to find in the
embedded systems market. The
“Developer’s Kit’’ for a particular
processor has just about everything you
need to writc code except the
microprocessor manufacturer’s data
book. My MICRO-C 8051 package
included the following items: MICRO-C
8051 compiler, ASMS51 cross-assembler,
optimizer, hand coded (in assembly)
standard library functions (with source
code), monitor/debugger (with source
code), macro pre-processor, linker and a
text editor. The best news--a
“‘Developer’s Kit”” for any of the
supported processors is only $99.95 plus
shipping when you buy it direct from
Dunfield Development Systems.

MICRO-C is a K&R style C compiler. It
provides features of special interest to
the embedded systems developer such as
being able to write interrupt handlers in
C and extending the standard library
with some additional bit manipulation
functions. Other features include inline

15

assembly language capabilities and multi-
line macros.

There are a few drawbacks to MICRO-
C that the C purist might criticize. Cur-
rently there is no support for structures,
unions, or bit-fields. There are also no
floating point math functions or opera-

_tions. For the most part, the effect of
these omissions on an 8-bit embedded
system is negligible. In most instances
coding techniques can easily work
around these limitations. Of course if
these things really bother you there’s
always those $2,000 systems.

A word of caution--purchasing MICRO-
C or any other high level language will
not relieve you from learning the intrica-
cies of the hardware for your target sys-
tem. Unlike your PC or CP/M machine,
there is no operating system or system
services, more correctly, there are only
those services you provide in the code
you develop. There are no free rides when
yow’re working with computers at this
level.

Writing articles doesn’t mean I'm the
last word on the subject of microcontroller

For Sale: GIMIX 6809 SS-50 floppy
DMA disk controllers. Have six to
sell at $25 each (plus shipping). These
are like new and DOCS may be had
for a fee. These were top of the line
controllers for the SS-50bus system.
Contact Bill at TCJ (916) 645-1670.

For Sale: GIMIX FULL SYSTEM,
6809 SS-50 box (very big and heavy),
15 slot mother board, with several
SS-30 slots. 6809 CPU, 64K memory,
2 DMA disk controllers (8 and 5 1/4"
drives supported), 2 serial ports, 1
720K 5 1/4" drive and 1 360K 5 1/4"
drive in case. Books, Disks, works,
some programs (Forth,
wordprocessor, etc.),currently running
FLEX. $100 (plus shipping if not in
San Francisco bay area). Contact
Neale at (415) 892-1432, or Bill at
TCJ (916) 645-1670.

16

O

hardware and software development.
There are lots of talented folks out there
and I'm sure a lot of them are more
experienced than I am. Do you have a
favorite piece of software you use that
you think could help others? Drop me a
note and tell me about it. I'd especially
like to hear from you if you're using
something other than an MSDOS com-
puter. Let me know what's available for
the developer that uses an Amiga, Atart,
Color Computer, or CP/M machine.
When writing please remember to tell
me what machine it runs on, who pub-
lishes it, and where to get it (BBS, direct
sales, etc.) In fairness to all, please indi-
cate if you are somehow associated with
the publisher/manufacturer. I'll still
mention your product if it’s related to
embedded systems work but I want to
keep things on the up and up.

Author Information

Tim McDonough makes a living inte-
grating remote measurement and con-
trol systems with data communications
systems and developing hardware and
software systems for process control and
data acquisition. He prefers to be con-

Support needed: Looking for help with
South West Technical 6800 system. This
is a tape cartridge unit (AC30). Trying
to find tapes, docs, any help? Contact
Todd Silk, at (208) 772,463 1.

Wanted: SAGE/Stride CP/M68k or
UNIX software. Have a SAGE 1V, (ac-
tually I but labeled wrong) with 500K
of memory. Also looking for hardrive
for same. Want source code for CP/M
BIOS and BOOT disk. have entire P-
System with source code for that BIOS
and ROMS. Complete set of DOCS and
will copy what you need in exchange for
software or support. Unix may not run
on my system, but feel that I neeed to
collect this information before it disapears
for good. Inmterested in hearing about
projects/uses you may be doing with these
systems. Contact Bill at TCJ (916) 645-
1670.

tacted electronically if possible.

Internet E-Mail:

tmcdo450@athenanet.com
BIX: tmcdonough
US Mail: Tim McDonough
Suite 3-672

1405 Stevenson Drive
Springfield, IL 62703
USA

Vendors Mentioned in this article:

PseudoCorp (PseudoSam Assemblers/
Simulators) 716 Thimble Shoals Blvd.
Suite E Newport News, VA 23606 (804)
873-1947

Dunfield Development Systems (MI-
CRO-C/XASM) P.O. Box 31044
Nepean, Ontario (Canada) K2B 8S8
(613) 256-5820 (8:00am to 7:00pm EST)

The Computer Journal Classified sec-
tion is for items FOR SALE. it is priced
and setup the same as NUTS & VOLTS.
If you currently have an ad running in
NUTS & VOLTS, just send us a copy of
the ad and your invoice from them,
along with your check, and we will
publish it in the 7CJ.

Classified ads are on a pre-paid basis
only. The rate is $.30 per word for
subscribers, and $.60 per word for oth-
ers. There is a minimum $4.50 charge
per insertion.

Support wanted is a free service to our
readers who need to find old or miss-
ing documentation or software. No
FOR SALE items allowed, however
exchanges or like kind swapping is
permitted. Please limit your request to
one type of system. Call TCJ at (916)
645-1670,

The Computer Journal / #58

Dr. S-100

By Herb R. Johnson

Regular Feature
Intermediate

* Acquiring S-100 Skills

Resurrecting your S-100 system

My experience suggests that setting up a
new S-100 system from old cards is like
helping a person recover from a stroke:
there is a period of tests to find damage,
and stages of exercise to restore full func-
tionality. New parts may be necessary,
which also require an adjustment pe-
riod. And, like a stroke, these events are
rarely planned for.

I was rewriting a Tarbell floppy disk
controller BIOS for a SD Systems floppy
controller recently. My development sys-
tem was a Vector Graphics S-100 chas-
sis, an IMSAI front panel, a Cromemco
7280 ZPU, and four CCS 16K static RAM
cards. The memory cards feature an LED
which lights when the board is addressed,
and DIP switch logic for independently
addressing each 4K of memory. Static
memory, by the way, is strongly recom-
mended on the S-100 bus! Of course,
the IMSAI front panel allows easy
rebooting and memory examination. The
Cromemco ZPU is switchable between 2
and 4 MHZ, ideal for debugging as you’ll
see later.

Asis my custom, I ran the assembler and
trotted to the ‘little programmers room.”’
By the time I got back, all should have
been assembled and the front panel blink-
ing merrily away waiting for a keystroke.
Instead, it was dark. After the appropri-
ate calling down of the gods for daring
to fail my “‘last’” programming change
of the day, my next reaction was..what?
What do you do when your system fails?

Use your senses
Before you grab a scope or even a meter,

inhale through your nose repeatedly,
i.e. smell! Is something burning? With

The Computer Journal / #58

experience, you can easily tell the differ-
ence between the ‘toasty’’ smell of re-
sistors, the ‘‘repaving the streets’” smell
of a fried transformer, and so on. With-
out those experiences, you can still trace
the odor to some source. My luck, I
noticed no such smells.

Next, use your hearing. Are the fans
running? This will tell you if AC power
is active (presuming you have AC fans.
Some people, incidentally, have S-100
systems without fans. They call them
“‘heaters.””) Of course, use your eyes!
Do you see smoke? Are some boards lit
up (hopefully with LEDs, not with the
incandescent glow of components). If
you find any catastrophic damage, shut
down your system at once!

Use your instruments

Total failure (no lights) is actually good
news! That limits the problem to the
power supply or the AC source. In my
case, however, no such luck. The front
panel lights were on, but not blinking.
The next step was the trusty voltmeter.
Mine is a Radio Shack digital voltmeter,
cost about $25, but any meter will do.
Measure the power supply voltages.
Generally it is easiest to do from the
enormous capacitors that old S-100 sys-
tems have: newer systems will have a
nice sct of power terminals to inspect.
Measuring from the S-100 connector is
risky!! Positive and negative voltages
are adjacent: a brief short will at least
ZAP your fuses, and possibly your logic!

Use your head

My system showed no +8 voltage: thus
the S-100 cards had no source for their
+5 volt regulators. However, the AC side
of the power supply had 110V AC avail-

able. To test my system power supply, I
removed most of the S-100 cards, both
to minimize possible damage from any
accident and to see if reduced power
requirements (or disengaging a board’s
shorted regulator) would change the re-
sults.

In diagnosis there is a pattern of behav-
ior to follow: isolate, test, modify, re-
peat. Isolate a subsystem, test its opera-
tion, modify a single feature of that sub-
system, and test again. Repeat this cycle
of modification and testing until you have
either found a fault or verified the
subsystem’s operation. When you find a
fault, isolate the fault area further and
continue testing.

Forward and retreat

On my system, a resistance check of the
rectifier diodes was good (forward resis-
tance a few tens of ohms, reverse resis-
tance very high). While a resistance check
of the transformer did not suggest the
windings were open, no voltage was
produced at the secondary. What now?

In principle, I could have torn down the
chassis and thoroughly tested all fea-
tures of the power supply. In fact, I pulled
out the rest of the S-100 cards, and went
to the garage to get another S-100 chas-
sis. Meanwhile, I commend Mr. Payson
for his foresight in keeping several S-
100 systems as a repair resource. If you,
however, enjoy building power supplies
or have a source of Vector Graphic trans-
formers, you could have fixed my sys-
tem. It’s all a matter of priorities. Re-

17

member, mine was writing a new BIOS.

How to stabilize a ‘‘new” system
My new box was from a banking system,
and had a full load of cards itself. There
is an art to pulling out a dozen S-100
cards without shredding your hands on
the IC pins which protrude like Punji

" sticks through each one. Hint: reach
below each card to the bottom-most edge
and push up. Practice helps.

From my previous use, I knew the power
supply on this box was operational. It
was certainly powerful enough, noting
the number of chips on each card I just
pulled out. To make space for my front
panel card, however, [would need a bus
extender card. (Why? The IMSAI front
panel card is 19 inches long, and rests in
a special slot on the bus that is extended
outside the S-100 card cage, which is
about 10 inches wide.) As my previous
Vector Graphic box also required an
extender, this was no problem. So, I
plugged in the front panel, the processor
card, one memory card and powered up
the new system. The lights on all the
boards came on! This suggested that no
board was seriously damaged, at least.

““The helm is not responding, Captain...”’

. My first tests were, of course, to read
memory locations via the front panel. 1
quickly found that, althoughI could read
an address, I could not use the NEXT
ADDRESS or DEPOSIT NEXT switches
to proceed to the next memory address!
Was this a failure of the processor card,
or the front panel card? I know the an-
swer, and decided to deal with it another
day. (Remember the BIOS I was writ-
ing?) Who else out there knows the prob-
lem? I'11 tell all next issue.

The fact that addressed locations had a
variety of data values in them, as dis-
played from the front panel, suggested
““nominal’” operation of all cards. I then
added the Tarbell controller, the serial I/
O card and all memory cards, and at-
tempted to boot. I guess I didn’t mention
that I was using two 8" floppy drives -
the ‘‘small’’ half-height Mitibushi drives
favored by Heath in their Z-100 systems.
These drives, as do all 8" drives, have a

18

distinctive sound to their operation that
is critical to diagnosing boot-up faults.
The sound of a ““homing’’ drive is like
driliing through wood, for instance.

Allow me to elaborate further, to dem-
onstrate the value of *‘deep understand-
ing”’ as well as the power of the senses
to determine computer operations. The
floppy boot process involves homing the
drive (a seek to track 0), followed by a
click or two as each track is sought (past
tense of seek, sorry) and read. The con-
tents of these ‘‘boot tracks’” is the CP/M
operating system including the BIOS
specific to your machine. However, you
may hear instead the ‘‘homing’” sound
followed by a sound like trying to drill
through a metal plate and failing: that is
due to the controller not sensing the
track 0 line from the drive to stop the
““home’’ operation, probably because the
drive ready line is apparently not ac-
tive. In my case, this occurred because
the floppy drive I used did not have
““terminating resistors’’ on its control
lines that give the interface driver chips
a source of current sufficient to “‘pull
down’’ the disk drive’s drive select or
drive ready lines. (See figure 1 for the
schematic of this scenario.) Of course, 1
didn’t know all this at once, so don’t feel
overwhelmed by this detail: experience
comes with time and study.

More ailments

Once I added the terminating resistor
pack, which was not needed by the
Tarbell controller but necessary to the
SD Systems controller, I heard the fa-
miliar *‘clunk-a-thunk’* operation of the
A drive. However, I did not get the final
‘‘A>’’ prompt on the screen. Again from
experience, this is a typical symptom of
some kind of memory fault. An area of
memory vital to CP/M was absent, or a
memory chip was bad, or the processor
was running too fast for some area of
memory to respond reliably.

Another possibility was poor contact on
the S-100 bus by one or more cards.
Unfortunately, this is a chronic problem
in any system with hundreds of edge-
contact points (i.e. number of cards
multiplied by the number of bus connec-
tions per card). Age and storage make

the problem more acute - kind of a ‘“hard-
ening of the arteries.”” The cure is a
combination of edge connector cleaning
and careful ““seating’’ and reseating of
the cards into the connectors. Observe
any residue on the connectors. Try to use
contact cleaner and a soft cloth to clean
the edge of the board. Alcohol-based
cleaners will degrade the plastics; and
pencil erasers can be abrasive. A soft
artist’s eraser is better. Even pieces of
paper, or a toothbrush with a small
amount of soapy water followed by clear
water, can make a difference. By the
way, poor contacts are also a problem
with IC sockets: examine these closely
as well!

As for memory tests, try to run some
large programs that will use all available
memory, or switch suspect areas of RAM
into or out of active memory space. A
general memory test program is better
still. You can at least use CP/M’s DDT
to fill and examine memory areas. Again,
if your processor card has switchable
speeds, run your system ‘‘too fast” to
highlight errors. Note: hot IC’s, includ-
ing memory chips, fail at lower speeds
than cold chips. For subtle errors, I've
resorted to putting S-100 cards in the
freezer and using a hair dryer to exag-
gerate temperature-based errors.

Running at last!

By a combination of the above, working
on it over a few evenings, I finally re-
established a running and stable system.
All this may seem to be a lot of work to
some of you. But, consider what we have
learned about disk controllers, memory,
contacts, and so on. The modular nature
of the S-100 bus is ideal for repair and
for self-education. My ‘‘lost’” time is a
gain for you if you have picked up some
hints on testing and repairing your sys-
tem! Have fun, and tell me what you
have learned when it’s your tumn to res-
urrect your computer.

Letters and notes

Larry Cameron writes from GEnie (via
his IMSAI!) on how he feels he may be
“‘the only person crazy enough to be
doing something like restoring old ‘ob-
solete’ computers’” and hopes that TCJ

The Computer Journal / #58

will “‘continue S-100 stuff.”” Larry, I
hope my previous column shows a good
beginning. I hear from a number of
people who enjoy *‘antique computing,”
but rarely are any two of them in the
same city! For communications, you have
to go to national or international sources.
I recommend the CP/M Tech echo on
the BBS FidoNet network; I've also heard
good reports about a similar echo on the
Internet. Look at the end of my column
for contacts.

Eliot Payson of Littleton CO says he
“‘has several S-100 machines in various
stages of disrepair.”” Well, join the club!
Your condition is normal for the true S-
100 fan! I think you’ll like my column
this month! Eliot also sent me, inciden-
tally, a copy of his club’s newsletter, and
I hope our Editor Bill Kibler will **plug”’
it in more detail.

Some time ago, Gary Stagliano of
Manchester CT wrote to me and asked
about MYZ80. I'll refer him to the Sept/
Oct 92 issue of TCJ for the brief from
Lee Bradley. Incidentally, thanks to
Lee’s BBS, 1 have the latest version of
Simeon Cran’s MYZ80. As an early
beta tester, I ton am encouraged by this
product. However, as currently distrib-
uted it lacks development
documentationessential for any *“tinker-
ing” programming. I'll encourage such
docs by contributing some of my ‘‘inves-
tigations”’ to Lee’s board. See his col-
umn for contact info.

Resources

FidoNet: an international network of
Bulletin Board Systems, usually with
small or no subscription charges. It sup-
ports a number of informational exchange
areas, including one for CP/M called
*“CP/M Tech.”’ Contact your local com-
puter club for a list of local boards which
may carry FidoNet.

Internet: another international computer
network, but harder to get onto for free
as it is usually associated with universi-
ties or other institutions. Contact your
local university’s computer center for
details.

Lee Bradley’s Z-Node #12: (203) 665-
1100 in CT.

The Computer Journal / #58

MAX. 10 FEET

HOST SYSTEM FLAT RIBBON OR SA 850851
TWISTED PAIR
2
WRITE CURRENT SWITCH"®
TWO SIDED* 1o R b
P — - —
HANGE "
| DISK CHANGE " " |
SIDE SELECT e 13 :
¢
i N USE
i e - 16 —1———@
I /
_ﬂﬂ,i,,, R —— | -] [y J— }
INDEX 20 19 |
READY
° 22 n—4@
SECTOR(851 ONLY}_ 14 2 |
DRtV T 1 (SIDE SELECT OPT!
€ SELECT 1 (SIDE SELECT O 26 - L
AV CT 2{SIDE SELECT OPT)
DRIVE SELECT 2 2 - b
DRIVE SELECT 3 (SIDE SELECT OPT)
30 29———4r
S
DRIVE SELECT 4 (SIDE SELECT OPY) 2 3 ¢
DIRECTION SELECT (SIDE SELECTOPT! | 2 L
STEP 6 35—t
WRITE DATA 18 37 o
> .
' ITE GATE
i WRITEG 40 —3—g
% - —
AACK 00
TRAC — 42 —A—
WRITE PROTECT
Pl P y 35—
¢ T RGRbDATA T ©
e - —
P DATA (851 ONLY!
_.._5%,&”,,_ S —) 47——@
EP CLOCK {851 ONLY)
s -t s _/—49*.4;
5 vne I
Y 5 e—4&
&4
b -77T0 16 VDC (*5 V OPT)
e @ 4 33—
DC GND
24 VOO
£ . 1 2 b
7 $24VRETURN - _‘
“
AC INPUT
1 FRAME GROUND ;
T AC INPUT 3
o | FRAMEGND
&
AC GND 8 TWISTED PAIR

*These lines are alternate input/output lines and they are enabled by plugs. Reference section 7 for uses of these lines.

Not shown are pins 4, 6, and 8 which are jaternate 1/0 pins.

MAX 10 FEET,
RIBBON OR
TWISTED
PAIR

7407/7438

SA 850 —

Figure 1: Disk Drive and Controller Interface

19

Mr. Kaypro

By Charles B. Stafford

This is the first of a series of articles, the
thrust of which is to make your hard-
ware more friendly to the only user that
counts, YOU. All of the modifications
described will be possible with only or-
dinary hand tools, all of these modifica-
tions have been done by the author who
has two left thumbs and is supposed
(according to his mother) to be right-
handed. Although the platform involved
is a Kaypro, the principles are applicable
to any machine, and the use of the Kaypro
as an example, is only because that’s
what I happen to own. I am available for
questions most evenings at (916) 482-
8305.

The RESET Button

The Reset button on the Kaypro is
mounted on the rear panel some- where
in the vicinity of the top right corner. 1
say ‘‘somewhere’’ because the exact lo-
cation varies with the age and type.
Perhaps I am more adventurous than
most, but I scem to get my trusty side-
kick “‘hung’’ rather frequently, and it
occurred to me once as | wished for a ten
foot right arm, that I could correct
Kaypro’s design error. I'm sure that the
designers put the Reset button where
they did out of concern that it not be
accidentally activated and to make sure
that its use was the result of a consctous
decision, but it certainly was inconve-
nient. The bottom line was that it be-
longed it on the front panel.

A little research (removing the cover)
revealed that the proposed location was
clear of any interference, and that the
wires were long enough to reach. It also
became apparent that the actual button
was mounted from the rear of the panel,
and held by a serrated ring screwed on
from outside, and only finger tight.

20

Here is how we do it.

As it says in all the manuals, unplug the
power cord not only from the wall, but
also from the computer (unless you have
a really early one where the line cord is
mounted in a strain relief). Remove the
cover carefully, and put the screws (10
for a Kaypro) in a safe place. I use those
plastic cans that film comes in to keep
track of the screws.

Decide where the new location is, make
sure it will be clear of any folding key-
boards, and leave some room for another
front panel modification later. Mine is
centered between the monitor and the
drives, about an inch and a half above
dead center vertically. Put a piece of
masking tape over the spot, do your final
measurements and mark the spot on the
tape. If you have a center punch and are
a purist, this is the time to use it.

Next comes the sneaky part. We use a
six inch piece of two and a half inch duct
tape, you know, McGyver’s favorite tool,
and make a tent over the back side of the
new location (on the inside surface of
the front panel). Pinch the sides of the
tent shut and we have a “‘pouch’ over
the place we’re going to drill to catch all
the shavings and filings.

Here comes the scary part !

Using your favorite electric (OK, Hand)
drill a 3/16" pilot hole being careful not
to hit the duct tape, and then a 3/8" hole.

Remove the masking tape, smash the
duct tape pouch down on the inside of
the front panel to trap all the nasty things
and remove it carefully along with the

trash. Clean up the hole if necessary and
the hard part is done.

One last bit of surgery, the wires going
to the Reset button are fastened to the
right stand-off (support) for the
motherboard by a small plastic ty-wrap
which must be cut. Diagonal cutters
work just fine.

The fun part

Unscrew the plastic ring that secures the
Reset button, move the button assembly
to the new hole and reinstall the retain-
ing ring.

Carefully check the area under the new
location to make sure no metal chips got
away, replace the cover and screws and

YOU’RE FINISHED.

When you realize the convenience of the
new location, you may start thinking
about the video brightness control. The
only differences are 1. the knob ; 2. the
wires will have to be extended. Other-
wise the operations are the same.

Good Luck, and May You Live Long.

Chuck has proposed some articles for
his next column unless our readers flood
him with requests for information and
help. The proposed articles include: A
replacement of the 65 watt power supply
with a pc-xt 150 watt power supply. A 5
Mhz speedup. A side select modification
to convert early ssdd machines to dsdd.
A Construction of a 4-drive decoder
(TurboRom). If you have any special
ideas or problems, give Chuck a call,
and he will help you in resloving those
Kaypro problems. BDK

The Computer Journal / #58

Computing Timer Values

By Clem Pepper

 Special Feature
Intermediate Support

Programs for Hardware

“It’s test time ', at least that’s what I say to my students. For
those who like to see if you remember your fundamental
electronic skills, here is an article about timers and calculai-
ing the resistors and capacitors. This article also shows an
appropriate use for doing something in ‘‘C."" Read on and see
if vou can pass the fundamentals test. BDK

COMPUTE IC MONOSTABLE AND TIMER VALUES
WITH THESE C PROGRAMS

IC monostable equations appear to be straightforward for the
most part. They should present but few difficulties. But there
is a catch: keeping track of the decimal points. Resistors are
in M ohms, K ohms, or just plain ohms. Capacitance in micro-
, nano-, and picofarads. Pulse widths in whatever
submicrofraction of a second. Not to mention time spent
thumbing through data manuals in search of an equation.

Well, here are two programs to do away with all that. The one,
MONO.C, solves for any one of three variables when given the
two known for thirteen popular IC monostables. The other,
TIMR.C, solves for two of the five variables for the 555/556
timer in the astable mode. (Solutions for the monostable mode
are provided in MONO.C.) Both programs are fully menu
driven. In addition to calculation of component values and/or
timing testing is performed for over/under limit conditions
where these occur. If a limit is exceeded an explicit error
message is displayed.

The programs are written in C. They should compile with any
C compiler. I took care to avoid code that wouid limit the
portability. For that reason MS DOS ANSI functions are used
for cursor and screen clearing tasks. My original code was
written in 1986 using The Software Toolworks TOOLWORKS
C compiler. I recently recompiled it with Borland’s Turbo C
version 2.0 with only minor revisions. If you do not havea C
compiler a disk containing both the source and executable code
for a PC or compatible is available from the author.

Using The Monestable Program

For PC clone users, be sure that DEVICE=ANSI.SYS is in-
cluded in your computer’s CONFIG.SYS.

Table 1 is a listing of the timing equations for the IC monstables.
In its operation the program first displays the 13 IC types. It

The Computer Journal / #58

then queries for the type and the variable to solve for. The three
monostable variables are the pulse width, the timing resistance,
and the timing capacitance. You are asked to enter the two
known. The solution for the third is then calculated and
displayed. If a component value exceeds a limit for the device
an error message is displayed. The program can be run
repeatedly without exiting from it.

The program begins with a display of the monostables for
which a solution can be made. This is:

Hi! Enter the letter matching the mono of your choice
from the selection below.

A=9600 E=74122 I=74L8221
B=9601 F=74123 J="74C221/4538
C=9602 G=74LS123 K =4528

D =74121 H=74221 L = 555/556

The first step, then, is to enter the letter corresponding to the
device of interest.

In response the program prints a verification request using the
device number,

Is the 74LS123 the mono you want? <Y/N> : y
Pressing ““y”” (or **Y"’) causes the program to continue. If

n”’ (or ““N”’) is pressed you are asked to make another
selection.

Assuming the entry is for the desired mono you are asked to
select from one of the following options:

Type in T if the program is to solve for the pulse width:
Type in C if the program is to solve for the timing capacitor:
Type in R if the program is to solve for the timing resistor:

Suppose we enter “‘t”’ (or ““T”") for the pulse width. We are
then queried for the two remaining requirements - the timing
components:

Enter vour timing capacitor requirement, CV : 1
Enter multiplier M=mfd : N=nfd : P=pfd : n

Enter your timing resistor requirement, RV : 47
Enter multiplier O=ohms ;: K=kohms : L=mohms : k

21

In this example we are using a one mfd capacitor with a 47K
resistor. With this information provided the program calcu-
lates the pulse width and displays it’s value along with the two
given inputs.

TV = 21.15 uSec is the pulse width solution.
CV = 0.001 MFD is the timing capacitor solution.
RV = 47000 OHMs is the timing resistance solution.

We are then given the opportunity to continue with another or
the same device with changed values or to exit the program.

Do you wish to continue with new input <Y/N>? : n

This sequence as it appears on our screen is illustrated in
Figure 1.

The Monostable Program

The program source code is given in Listing 1. (The line
numbers are for convenience only, not a part of the code.)
Comments are used throughout to aid in its understanding.
Defines and global declarations head the listing, preceding the
instruction code. Program operation begins with the function
main(). There is nothing particularly devilish about the code
with the possible exception of the use of structure variables.
Their primary purpose is to simplify the logic for the printf()
statements.

Each function call is preceded by comment describing its
purpose. A comment stating the source of the call is also
provided. Each call to scanf() is followed by a call to flush the
keyboard buffer. Without this call the program will leap over
the next query. This arises from a bug in the scanf() library
function.

The heart of the program is in the function mon_calc(). Here
is where the program learns which variable it is to solve for.
The variables ms, rnl, rn2, and rn3 (refer to Table 1) are then
assigned. Variable mdl was assigned earlier in moneo_inp()
when you entered the device letter.

Following the assignments the program queries for the two
known quantities and their multipliers. The actual multiplier
is assigned with a call to sca_par(). A call is then made to
equatn() for calculation of the unknown. The assignment
variable ms is passed in the function call. Note that assign-
ments for three quantities - TV, CV, RV - are made in this
function.

On return from equatn() the three values are displayed. An
advantage of C’s structure is seen in the simplicity of the
printf() statements.

A test then follows for limits. Should one or more be exceeded

22

an error message is displayed.
Using The Timer Program

Table 2 is a listing of the 555/556 equations. In its operation
the program first displays the five variables and instructions on
their selection. You are asked to enter the two unknowns for
which you want solutions. You are asked to verify these - a
chance to change if desired. You must then provide informa-
tion on the remaining three variables. Solutions are then
calculated and displayed. No limits on component value exist.
There is, however, an upper limit of 0.33 for the duty cycle -
an error message is displayed if this is exceeded. Also for
negative values in any solution. The program can be run
repeatedly without exiting from it.

On typing TIMR and pressing RETURN the screen first clears
and then displays the following:

Hi! Pick two variables for solution from the table below.
Enter them in ascending order (b ¢, not e b).

Follow each with a RETURN:

A = ONE CYCLE TIME, TT. TT = t(low)+(high).
B = THE DUTY CYCLE, DC. DC = t(low)/TT

C = THE TIMING CAPACITANCE, TC.

D = THE UPPER RESISTANCE, RA.

E = THE LOWER RESISTANCE, RB.

Note: Do not sclect A and C as a pair.

An entry is not a commitment till you make it so.
If you flub, just continue on, till queried.

Then enter N to start over.

Note that we cannot obtain a solution for the duty cycle and the
timing capacitance as a set.

In this example the solution for the two resistors, RA and RB,

is desired, so we type “‘d”’ (or “‘D”’) followed by a RETURN,
the “‘¢”’ (or ““E’’). Again followed by a RETURN. Like so:

e
We are given an opportunity to change our minds:

Are D and E what you want? <Y/N> : y

Assuming happiness with our selection we enter ‘‘y’’ (or
“Y*’). We are then queried for the three remaining variables:

Enter your one-cycle time requirement TT: 5

Enter multiplier S=seconds : T=mS : U=uS : : t

Enter your duty cycle (must be <.33) requirement DC: .2
Enter multiplier - No multiplier for DC. Press RETURN.;
Enter your timing capacitor requirement TC: .05

Enter multiplier M=mfd : N=nfd : P=pfd . : m

In this we have chosen 5 mS for the period, a duty cycle of 0.2,

The Computer Journal / #58

and a timing capacitance of .05 mfd. The resistance solutions
follow:

RB = 2.89e¢+04 OHMS is the lower resistance solution.
RA = 8.66¢+04 OHMS is the upper resistance solution.
TT = 5¢+03 : DC=0.2: TC=10.05

As with the monostable program we have the option of con-
- tinuing;

Do you wish to continue with new input <Y/N>? n

Usually we know the frequency and duty cycle of the desired
‘waveform. Capacitor values adhere closely to a fixed numeri-
. cal scheme. The most flexibility and our greatest need to know
is with the resistors. The effect of going to the nearest standard
resistances is easily checked by their substitution and solving
for the period, capacitance, and duty cycle.

The preceding sequence as it appears on our screen is illus-
trated in Figure 2.

The Timer Program

The program source code is given in Listing 2. It is similar in
its construction to MONO.C. Although shorter it is somewhat
more complex in having to deal with five variables. As with
MONQO.C the program takes advantage of #defines and the
structure. The structure may look strange in that there are
repetitions for the resistance variables RA and RB. This arises
from the multiple solutions for these and the manner in which
the data is displayed. Table 2 includes the program assign-
ments associated with each of the possible solutions for all the
variables.

The heart of the program is in the function ast_cale(). As in
mon_calc() the program learns which variables relate to the
unknowns (refer to Table 2). This function is more complex
than its monostable counterpart in the number of possible
combinations that exist. As in MONO.C scaling takes place
in sca_par().

Two calls are made to equatn() and the values displayed. A
test for the duty cycle and any negative results follow.

Reference

Pepper, Clement S.

‘A Monostable Catalog For Experimenters’’

Popular Electronics, September, 1979, pp 69 - 79.

A Program Disk

A disk containing the equation tables, C source code, and the
run files (EXE) for the two programs is available from the

author. Disk format may be any IBM compatible mode: 5 1/
4 360 K/1.2M or 3 1/2. To obtain the disk send a check or

The Computer Journal / #58

money order for six dollars ($6.00) along with your mailing
address to

C. S. Pepper,
13409 Midland Road, Apt. 175
Poway, CA 92064

A photocopy of the referenced article is also available for
$2.00. Allow three to four weeks for delivery of these.

l: /‘ RIS E2 224 2220 222 L PRS2 2222 Rt 2 s Rt Y l/
2: /" EEERNEERXERSRKE R R & MONOC RERRERAEEE R R RN RN i/
3 *
4: /* A program for calculation of IC monostable */

5:/* variables. ** */

6: /’ by memx S Pepper WHERRRARRRRRRRREERIRERE t/

7: /i o ke ol 2o b ok ok s ok ok ool o o ook o ok o ok ok oK ok ke ok ok ok S ok ek #/
8

9: #include <stdio.h>

10:

11: /* === function prototypes == */

12: void main(),mono_inp(), error_in(), y_n_ver(),

13: mon_calc(), equatn(int), sca_par(char), repeat(),

14

15: /* DEVICE=ANSLSYS required in CONFIG.SYS */

16: #define CLRSN “\033{2J>* /* Clear the screen */

17: #define CURUP <\033{A”* /* Cursor up onerow */

18: #define CURBK *\033[D>* /* Cursor left one col */

19: #define CURLS **\033[K’’ /* Erase to line’s end */

20: #define ERASE ** ** /* Erase one space */

21: #define POSCUR “\033[9;1H"’

22: /* position cursor line 9, col 1 */

23: /* = global vanables =—*/

24:intrerr; /* Resistance limit error flag ~ */

25 int mdi; /* Monostable device identifier */

26: float sin; /* A monostable solution transfer var */

27: float sen; /* A monostable scaling transfer var */

28: float sel; /* Transfer vanable for st var */

29: float se2; /* Transfer vanable for 2nd var */

30: float TV; /* Timing variable (pulse width) ~ */

31: float CV; /* Capacitance variable */
32: float RV, /* Resistance variable */

33:

34: /* == mono identification structure */
35 /* Relates menu to device type == */

36: struct mono_sel {

37 char *ic_sel, /* User selection code */

3R char *ic_dev; /* Monostable ID number */
39: } selattr{12] = {

40: /% ic_sel ic_dev */

a5 wD”,
46 CET, BT,
47 “Fv, 741237,

“741217,

48 G, *‘74LS123”,
49 “H7, 74217,

50. I, ““74L8221°°,
Sk, +474C221/4538,
52 “K', *'4528”,

53 L, *'555/556"

54: N

56 /* ===mono solution message structure == */
57: struct monocal {

58: char *parmtr; /* Parameter variable assigned */
59: char *p_strg, /* Mono parameter string msg */
60: char *solmsg; /* The solution message *
61; char *multi; /* Data scaling factors */

62 } calatir]3] = {

63: /* parmtr p_strg solmsg */
64: /% comen meee e */
65:/* multi *

66:/% - *

67: ““TV"","pulse width™*, " uSec is the pulse width solution.”’,
68 “*S=8ec.T=mS:U=uS",
69: ““CV”*,”’timing capacitor”’,
““MFD is the timing capacitor solution.””,
70: <“M=mfd : N=nfd : P=pfd"’,
71 *“RV™,” timing resistor”’,
““OHMs is the timing resistance solution.””,
72: ‘‘O=ohms : K=kohms : L=mohms”
73: %

75: /* == resistance error structure */
76: struct r_error {

77 char *r_limit,

78: } erattr[9] = {

23

79: 44<1400°,”°<2000",>*<5000",”* <1 0000",”*>40000",
80: *>50000"",*>100000",”">350000",”* >1G00000"
81: IR

82: /* == Begin Program == */

83: void main()

84: (

85: printf{**%s’",CLRSN), /* Clear the screen */

87: /*** Mono selection menu ** */
88: printf(** Hi! Enter the letter matching the

mono of your choice\n’");
89: pontf(** from the selection below \n\n"’);
90: printf** A=9600 E=74122 [=74LS22I\n""),
91. printf(** B=960]1 F=74123 J=74C221/4538\n""),
92: prntf(** C=9602 G=74LSI123 K=4528 \n’*),
93: printf(** D=74121 H=74221 L =555/55\n\n""),
94: mono_inp();
95:)
96:
97: /* = Assign value to mono type identifier, mdi = */
98: vord mono_inp() /* From: main(), error_in(), y_n_ver() */
99:
100: char sel;
101: sel = getch();
102: switch(toupper(sel)) {
103: case ‘A™: mdi= 0, y_n_ver(), mon_calc(), /* 9600 */
104: case ‘B mdi= 1, y_n_ver(),; mon_calc(), /* 9601 */
105: case ‘C’:mdi=2; y_n_ver(); mon_calc(); /* 9602 */
106: case 'D’:mdi=3; y _n_ver(); mon_calc(); /* 74121 */
107: case ‘E’: mdi=4; y _n_ver(),; mon_calc(); /* 74122 */
108: case ‘F:mdi=S5; y_n_ver(); mon_calc(); /* 74123 %/
109: case ‘G™: mdi= 6, y_n_ver(); mon_calc(); /* 74LS123 %/
110: case ‘H: mdi= 7, y_n_ver(); mon_calc(); /* 74221 */
11l case ‘I mdi=8; y_n_ver(); mon_calc(), /* 74LS221 */
112: case ‘) mdi=9; y_n_ver(}, mon_calc(); /* 74C221/4538 */
113: case ‘K’:mdi=10;y_n_ver(); mon_cale(), /* 4528 */
114: case ‘L": mdi=11;y_n_ver(), mon_cale(); /* $55/556 */

115 default: printf{**%s%s%s%s’’ CURUP,CURBK,ERASE,CURBK);

116: error_in();

17)

118}

119

120: /* = Display error message in menu selection = */
121: void error_in() /* From: mono_inp() */

122: {

123: pnntf(** Your entry is outside the menu\n’");
124; pnntf* Please re-enter your selection.\n”");
125: mono_inp(),

126)

127;

128: /* = Requestor selection confimation == */
129: void y_n_ver() /* From: mono_inp() */
130: {
131: char verify,
132: pnntf{““\tls the %s the mono you want? <Y/N>: |
selattr[mdi}.ic_dev),
. 133 venfy = getch(),
134: if{toupper(verify) = *Y") { pnntf{(**\n’"); retum; }
135. else printf{**%s%s’’ POSCUR,CURLS),

136: printfl‘ “\tPlease re-enter your selection\n’");

137 mono_inp();

138: }

139

140: /* = Variable inputs and calculations, display of results. = */

141: void mon_calc() /* From: mono_inp() */

142 {

143 char par, scale,

{44: /* par - parameter input for solution: T, C, or R */
145: /* scale - multiplier input by user ./
146:int m1, m2, m3, ms,

147: /* ml, m2, m3 - struct monocal routing code */

148: /* ms - monocal structure identifier */

149

150: printf{* “\tType in T if the program is to solve for the
pulse width: \n"");

151, printf* ‘MType in C if the program is to solve for the

152: timing capacitor: \n”"),

153 printf* “tType in R if the program is to solve for the

154: timing resistor: \n'’);

155: /* ** Enter parameter for solution: ‘R’, ‘C*, or ‘T" ** ¥/
156: par =getch();
157:

158: /* ** Assign variables for identifying parameters R, C,or T ** */

159:
160: /* ** solve for the resistance ** */

161: if{toupper(par) = ‘R’) {

162: ml=0,m2=1,m3=2,
163 iflmdi=0|mdi=1|mdi=4) {ms=17,)
164: 1% 9600, 9601, 74122 */

165 elseifimdi=2) { ms=18,}/* 9602 */

166: elseifilmdi =3 || mdi=7}mdi=8) {ms=19;}
167 /% 74121, 74221, 74LS221 */

168: else iffmdi=15) { ms=20,}/* 74123 */

169: elseifimdi==6} { ms=21;}/* 74LS123 */

170: else iftmdi =9) { ms =22, } /* 74C22],4538 %/
171: else ifimdi = 10) { ms=123;) /* 4528 */

24

172:

else iffmdi==11) { ms =24, } /* 555/556 */

173:

)
174: /* ** solve for the pulse width ** */
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:

else if{toupper(par) = ‘T") {

ml=1,m2=2;,m3=0,
ifimdi=0)mdi==1||mdi==4) { ms= 1,}

/* 6600, 9601, 74122 */

else iflmdi==2) { ms= 2;} /* 9602 */

else ifimdi =3 || mdi= 7 || mdi==8) { ms= 3;}
/* 74121, 74221, 74LS221 */

else ifimdi==5) { ms= 4} /* 74123 %/

else iffmdi—6) { ms= §,) /* 7TALS123 %/

else iftmdi ==9) { ms = 6, } /* 74C221,4538 %/

else ifimdi==10) {ms = 7,) /* 4528 */

else ifimdi = 11) { ms = 8; } /* 555/556 */

187:

188:
189:
190:
191:
192:
193
194:
195:
196:
197:
198:

210
21

/* ** solve for the capacitance ** */
else if{toupper(par) = ‘C") {
mi=2,m2=0,m3=1,

iftmdi =0 mdi=1|mdi==4) { ms=9;)
/% 9600, 9601, 74122 %/

else iftmdi==2) { ms=10;) /* 9602 */

else iffmdi=3||mdi=7||mdi=28) { ms=11,}
/* 74121, 74221, T4L8221 ¥/

else ifftmdi==5) { ms=12,}/* 74123 %/

else ifmdi==6) { ms=13;}/* 74L8123 ¥/

else iffmdi=9) { ms=14;}/* 74C221,4538 */

else iftmdi == 10) { ms = 15,) /* 4528 */

else iffmdi = 11) { ms=16; } /* 555/556 */

}

: /* ** Enter 1st known parm and scaling required ** */
printf*n™);
printf(* ‘MEnter your %s requirement, %s : **,calattr{m1].p_strg,\
calattr{m1].parmtr);
scanf{*%f"" &sel), Aush(stdin),

printf(*‘tEnter multipier %s : ** calattrfm1].multi),
scanf{*‘%c™ &scale), {Hush(stdin);
sen = sel; sca_par(scale), sel =sen,

212

23

248:
249:
250:
251
252
253:

/% ** Enter 2nd known par and required scaling ** */
printf{* ‘MEnter your %s requirement, %s : ** calattr{m2].p_strg)\
calattr{m?2) parmtr),
scanfl*%f" &se2), fMush(stdin);

printf{* “\tEnter multiplier %s : ** calattrfmn2].multi);
scanf{*‘%c’ ' ,&scale), fllush(stdin),
sen = se2; sca_par(scale}, se2 = sen,

: /* ** Get solution for unknown parameter ** */

: equatn{ms);

: printf{* ‘\n\t%s = %g %s\n’’ calattr{m3]. parmtr,sin calattr[m3].solmsg)
. printf{* \t%s = %g %s\n"’ calattr[m]] parmitr,sel calattr[m1].solmsg),
¢ printfl* ‘\U%s = %g %s\n"’ calattr{m2] parmtr,se?,calattr{m2}.solmsg);

/tl!!l*!lt* ERROR MESSAGES LT 1] l'ilﬂl*/
/* ** RESISTANCE UNDER/OVER LIMIT VALUES ** */
iflmdi=23) (iRV<1400)rerr=1; }
ifimdi = 7 || mdi = 8) { iftRV <2000) rerr =2, }
iffmdi==0mdi==1||mdi==2|mdi=4 ||mdi=3
mdi=6|lmdi=10)

{iftRV <5000} remm = 3; }

iflmdi =0 || mdi == 1 | mdi == 2) (ifRV >25000) rem=4; }

iftmdi == 3) {iffRV >40000) rerr=35; }

ifimdi = 4 | mdi == 5 || mdi = 6) {iffRV >50000) rerr=6; }
iflmdi == 8) { iffRV >100000) rerr =7,)

iftmdi == 9) {if(RV >350000) rerr=8; }

iflmdi == 10) { iRV >1000000) rerr =9, }

. /* ** Print resistance under/over error message ** */
Wflrerr I=0) {
printf{* ‘\n\tA resistance %s is unacceptable for the %s.\n"’ \
erattrfrerr-1].1_limit selattr{mdi] ic_dev), rerr =0,
pantf{*‘\tSelect a new value for R and begin again.\n");

}
/* ** CAPACITANCE OVER LIMIT VALUES ** %/
ifimdi =3 | mdi="7 || mdi==8) {iffiCV >1000} {
printf{* ‘\n\MCapacitance >1000 mfd is unsatisfactory for the %s . \
selattr[mdi)ic_dev),
printf{* “‘\n\tSelect new a new value for C and begin again.”’); }

254

255:
256:

repeat();
)

257

258
259:
260

261

262

263:
264,
265:
266:
267:

: /* = Solve for the unknown parameter = */

: void equatn(ms) /* From: mon_cale() */

:intms;

{

:int lvee, char dov,

/* lvee - natural log value for VCC %/

/* dev - code for 4528 DC voltage input */
iftms = 7}lms =15{|ms =23) {

printf{* \n\t If your VCC is 5 volts enter 177);

The Computer Journal / #58

printf{* \nMEnter one of the following code numbers for the 4528 VCC**);

268 prntf{*‘\n\t If your VCC is 10 volts enter 2, 25 int aj; /* xfer variable 2nd in */
269: prntf(**\n\t If your VCC is 12 voits enter 37, 26:int flg =0, /* Indentry flag */
270: prntf(*“\n\t If your VCC is 15 volts enter 47}, 27: float sln, TT,DC, TC,RA,RB; /* solution vanables */

297: else ifims == 14) { RV=sel;, TV=se2; sin=TV/RV, CV=sin;)

298: else iffms = 15) (RV=sel, TV=se2; sln=5*TV/RV*lvcc; CV=sln; }

299: else iffms = 16) { RV=sel; TV=se2, sln=909"TV/RV, CV=sln, }
300:

301: /* ** Solve for the Resistance (RV) solution ** */

302: else iftms = 17) { TV=sel; CV=se2; sIn=3.125*TV/CV, RV=sln, }
303: else ifilms = 18) { TV=sel; CV=se2; sin=3.226*TV/CV, RV=sln; }
304: else if(ms = 19) { TV=sel; CV=se2, sln=1.443*TV/CV, RV=sln, }
305: else iflms == 20) { TV=sel; CV=se2,sin=3.57*TV/CV, RV=sln; }
306: else ifims == 21) { TV=sel; CV=se2; sIn=2.22*TV/CV, RV=sln; }
307: else iffms = 22) { TV=sel, CV=se2, sin=TV/CV, RV=sin; }

308: else iftms == 23) { TV=sel, CV=se2; sin=5*TV/CV*lvcc; RV=sin; }

309: else iftms = 24) { TV=sel; CV=se2, sln=909*TV/CV, RV=sin; }
310:)

31k

312: /* == Multiply input by scale factor == */

313: void sca_par(mult) /* From: mon_cale() */

314: char multy;

315:

316: if{toupper(multi) = ‘S’) { sen=sen*le+6, retum;)
317 else if{toupper{multi) == ‘T") { sen=sen*le+3; retumn; }
318: else if{toupper(multi) = ‘U’) { sen=sen*1; retum; }
319: else ifttoupper(multy) = *M”) { sen=sen*1; return; }
320: else if{ttoupper(multi) = *N’) { sen=sen*le-3; retumn; }
321: else if{toupper(mudti) == ‘P") { sen=sen*le-6; retum; }
322: else ifitoupper(multl) = ‘O) { sen=sen*l; retum, }

M 28: float sen, sel, se2, se3; /* known var’s entered */
272: /* ** input code for VCC ** %/ 29:
273 dev = getch(); 30: /* === astabje solution message structure == */
274: 31: struct astcale {
275 /* ** Calculate natural log of VCC ** %/ 32 char *eq cde; /* This letter and */
276: ifidev="1")lvec = 1.609, 33; char *p_stmg; /* this message togetherin */
277 else iffdev = *2") Ivee = 2.303; 34: char ®parm; /* concert relate this vanable */
278: elseif{dev = *3’) Ivec = 2.485, 35. char®msg, /* to this solution for unknown */
279: else iffdev = 4} Ivee = 2.708; } 36. char *multi; /* Input pamm multiplier. */
280: 37 } astable[8] = {
281: /* ** Solve for the Pulse Width (TV) solution ** */ 38 ““A™, ‘‘one-cycle ime”’, ““TT™",
. 282 iffms==1) { CV=sel, RV=se2, sin=32*RV*CV*(1+.7/RV), TV=sln; } 39 “*uSec is the solution for one penod.””,

283: else ifflms ==2) { CV=sel, RV=se2; sln=31*RV*CV*(I+1/RV);, TV=sin;) 40; ** S=seconds: T=mS:U=uS:**,
284: else iftms = 3) { CV=sel, RV=se2; sin=693*RV*CV, TV=sln; } 41; ““B”, ‘‘duty cycle (must be <.33)"", “DC™’,
285 else iflms = 4) { CV=sel, RV=se2, sin=.28*RV*CV*(1+ 7/RV); TV=sin, } 42: *‘is the solution for the duty cycle.””,
286: else if(ms = 5) { CV=sel, RV=se2; sin=45*RV*CV; TV=sln; } 43: ** - No multiplier for DC. Press RETURN.”,
287: else iffms = 6) { CV=sel, RV=se2,sln=RV*CV; TV=sln; } 44: *C”, ‘*timing capacitor’”,>TC"’,
288: else iflms == 7) { CV=sel; RV=se2; sln=2*RV*CV*Ilvcc; TV=sln; } 45: **MFD is the timing capacitor solution™’,
289: else iffms = 8) { CV=sel, RV=se2;sin=1.1*RV*CV, TV=sing) 46: ** M=mfd : N=nfd ; P=pfd : **,
290: 47: “‘D”, “‘upper resistor’”, *‘RA”’,
291: /* ** Solve for the Capacitance (CV) solution ** */ 48: “*‘OHMS is the upper resistance solution.”’,
292: else iflms == 9) { RV=sel; TV=se2; sn=3.125*TV/RV*(1+1/RV), CV=sln;) 49: ** O=Ohms : K=Kohms : L=Mohms : **,

" 293: else ifims = 10} { RV=sel; TV=se2; sIn=3.22*TV/RV*(1+1/RV), CV=sln; } 50: ““E”, “‘lower resistor’’, ‘‘RB’’,
204: else ifims = 11) { RV=sel; TV=se2; sln=1.443*TV/RV, CV=sln, } S1: “‘OHMS is the lower resistance solution,”,
205: else ifilms = 12) { RV=sel; TV=se2; sIn=3.57*TV/RV*(1+.7/RV), CV=sln; } 52 *“ O=Ohms : K=Kohms : L=Mohms : **,
296: else if{ms == 13) { RV=sel, TV=se2, sln=2.22*TV/RV, CVs=sln; } 53 D", “‘upperresistor’’, “‘RA”’,

54; “‘OHMS is the upper resistance solution."’,
55; ** O=Ohms : K=Kohms : L=Mohms : **,
56 “E", *‘lower resistor’”, *‘RB>’,
57 ““OHMS is the lower resistance solution >,
58 ** O=Ohms : K=Kohms : L=Mohms : **,
59: “E”, “*lower resistor’’, *‘RB™",
60: “‘OHMS is the lower resistance solution.””,
61: ** O=Ohms : K=Kohms : L=Mohms : ** };
62:
63: /* = Begin Program == */
64: void main()
65: {
66: printf{**%s’” ,CLRSN};, /* clear the screen */
67. printfl**\tHi! Pick two variables for solution from the
table below.\n'"),
68: prntf*‘MEnter them in ascending order (b e, not e b)\n’’),
69: printf{*“\tFollow each with a RETURN:\n\n"");
70: prntf*“\t A = ONE CYCLE TIME, TT. TT = t(low)+t(high).\n""),
71 prntf(*“\t B = THE DUTY CYCLE, DC. DC = t(low)/TT\n"),
72 printf(*\t C = THE TIMING CAPACITANCE, TC.\n"*),
73 printf(**t D= THE UPPER RESISTANCE, RA\n""),
74: printf(*t E=THE LOWER RESISTANCE, RB.\n\n’"};
75: printf{* “\tNote: Do not select A and C as a pair\n”’),
76: prntf*“\tAn entry is not a committment till you make it so.\n™*);
77. printf{*“MIf you flub, just continue on, till queried \n'");
78: printf{*\tThen enter N to start over\n™’),

323. else iflftoupper(mult) = ‘K’) { sen=sen*le+3; returmn; } 79: astblin(),

324 else if{toupper(mult) = ‘L’) { sen=sen*le+6; retum; } 80: }

'325.) 8I:

326: 82: /* = erroneous input selection message = */

327: /* == Request decision to continue or to exit. =*/
328: void repeat() /* From: mon_cale() */

326: {

330: char venfy;

83: void error_in() /* from astblin() */

84: (

85: pnntf{* “\n\tYour entry, %c, is outside the menu.\n’" astable[aj].eq_cde);
86: printfl‘ “\t Please re-enter your selection\n’");

331: pnntf{**\n\tDo you wish to continue with new input <Y/N>? : <), 87. astblin(),
332 venify = getch(), 88:}
333 ifltoupper(vesify) = ‘N’) exit(), 89:

334: else printf{* ‘%s’’ ,CLRSN); main(),
335:)

Listing 1. The source code for MONO.C.

90: /* = defining astable parameters = */
91: void astbl_pr() /* from astblin() */

92: {

93:int astl, ast2;

94: if{fflg = 0) astl = aj;

95: else ast2 = aj;

96:

1./ */ . Pl — -1 A
;: ;: sanxnwaxnmnzurars TIMR.C nnvtu:nuuuttu u‘// g; :ggg;?; t(]gﬂig;l, astblin(); }
: 9%

4:/* A program for calculation of 555/556 timer ** */

3 /% variables, =% % ®k kb ik kb ok ok ok dkkok ko ok]

6./* by Clement S. Pepper #®* ***x»» ks sxxaxxnnrwans »/

100: printf* “\tAre %s and %s what you want? <Y/N> ;> astable[astl].eq_cde,\

101: astable[ast2}.eq_cde),
102: prntf{*“\n*’),

T.1* . : ,
8 103 y_n_ver(),

: 104 t_caloast] ast2);
9: #include <stdio.h> 105) ast_calc(ast],ast2),
10: ol

11: /* == DEVICE=ANSILSYS required in CONFIG.SYS ==*/
12: #define CLRSN *\033{2)"" /* ANSI Clear the screen %/

13: #define CURUP ‘\033{A”’ /* ANSI Cursorup one line */
14: #define CURDN <\033{B"* /* ANSI Cursor down one col */
15: #define CURBK *\033{D"* /* ANSI Cussor left one col */
16: #define CURLS “\033[K’* /* ANSI Erase to line’s end */
17: fidefine ERASE ‘“ ** /* Erase one space */

18

19: /* = function prototypes =— */

20: void main(), error_in(), astbl_pr(), astblin(),

21: y_n_ven(), ast_calc(int,int), repeat(),

22: sca_par(int), equatn(int), new_ent(int,int,int),

24: /* === global variables == */

The Computer Journal / #58

107: /* = read keyboard inputs == */

108: /* from main(), ermror_in(), astbl_pr(), y_n_ver(), ast_calc() */
109: void astblin()

110: {

L11: char sel; scanf{* ‘%c’* &sel), fush(stdin),

112: switch(toupper(sel)) {

113 case ‘A” aj=0; astbl_pr(),

114 case ‘B”: aj=1; astbl_pr);

115: case ‘C’: aj =2, astbl_pr(),

116 case ‘D": aj = 3; astbl_prQ),

17 case ‘E’: aj = 4; astbl_pr();

118 default: printf(** %s%s%s%s’ ", CURUP,CURBK,ERASE,CURBK),
119: error_in();

25

120:)

121:)

122:

123: /* == verify selection entry = */

124: void y_n_ver() /* from astbl_pr() */

125:

126: char venify,

127: verify = getch();

128: if{toupper(verify) = ‘Y’) retumn;

129: else (

130: printf(*%s%s%s%s%s” " ,CURBK,CURUP,CURUP,CURUP,CURUP),
131: printf(*%s\n%s\n%s\n%s\n"*,CURLS,CURLS,CURLS,CURLS),

132 printf{**%s%s%s%s%s’’ ,CURBK,CURUP,CURUP,CURUP,CURUP);
133; prntf{*‘\t Please re-enter your selections\n’’);

135, flg=0; astblinQ;
)

139; /* = perform calculations = */

140: void ast_calc(nl,n2) /* from astbl_pr() */

141: intnl, n2,

142:{

143: char scale, sf1, sf2;

144: int m1, m2, m3, ms1, ms2;

145:

146: ifinl == 0 && n2 = 1) { mi=2; m2=3; m3=4;, ms1=0; ms2=1; }
147 else iffnl =0 &&Nn2==12) {

148: printf{*“\tThere is no unique solution for this combination.\n”’),
149: printf{* ‘\tPlease re-enter your selections.\n’"); astblin(); }

150: else ifin] = 0 && n2 == 3) { m1=1; m2=2;, m3=4; ms1=3; ms2=0; }
151: else ifin] = 0 && n2 == 4) { m1=1; m2=2, m3=3; msi=4; ms2=0; }
152: else if(n]l == 1 && n2 ==2) { m1=0, m2=3; m3=4; msi=2;

153: else ifin] = 1 && n2 == 3) { m1=0;, m2=2; m3=4; msl
154: else ifin] = | && n2 == 4) { m1=0; m2=2; m3=3, msl
155: else ifin]l = 2 && n2 ===3) { mi=0; m2=1; m3=4; ms]=
156: else ifin] = 2 && n2 == 4) { m1=0, m2=1, m3=3; msl-
157: else ifnl = 3 && n2 =4) { m1=0, m2=1;, m3=2; msl=6; ms2=3; }

158:

159; /* ** First parameter entry. ** ¥/

160: printf{*Enter your %s requirement %s: ** ,astable[m1].p_stmg,\

161; astable[m1].parm),

162: scanf{**%f’ &sel); fMush(stdin),

163: printf{(*‘Enter multiplier %s ** astable[mn1].multi);

164: scanf(*‘%c’’ &scale), flush(stdin);

165. sen=sel; sca_par(scale); sel = sen;

166:

167: /* ** Second parameter entry. ** */

168: printf(* ‘Enter your %s requirement %s: * astable[rn2].p_stmg,\

169: astable{m?2] parm),

170: scanf(*‘%f" " &se2); fiush(stdin),

171:

172: printf(** Enter multiplier %s * astable[mn2]. multi),

173; scanf{* ‘%", &scale); fMush(stdiny,

174: sen=se2, sca_par(scale), se2 =sen;

175:

176: /* ** Third parameter entry. ** */

177; printf{** Enter your %s requirement %s: ‘“ astable[m3].p_stmg,\

178: astable{m3] parm),

179 scanfl(*‘%f"" &se3); flush(stdin),

180:

181 printf{* ‘Enter multiplier %s **,astable{m3] multi);

182: scanf{**%c’” &scale), fllush(stdiny,

183: sen=se3; sca_par(scale); se3 = sen;

184

185 ifinl =0 && n2 =1) { TC=scl;RA=se2;RB=s¢3; }

186: else ifln] = 0 && n2 = 3) { DC=se1;TC=se2;RB=s¢3; }

187 else ifin] == 0 && n2 = 4) { DC=se1;TC=se2;RA=s¢3; }

188: else ifin]l = 1 && n2 = 2) { TT=sel;RA=se2;RB=s¢3; }

189: else if(inl == I && n2 == 3) { TT=sel;TC=se2;RB=se3; }

190: elseiffn] == | && n2 = 4) { TT=sel;TC=se2;RA=s¢3; }

191: else ifinl = 2 && n2 = 3) { TT=sel;DC=se2;RB=se3; }

192: else iffnl = 2 && n2 == 4) { TT=sel;DC=se2;RA=se3; }

193: else ifinl = 3 && n2 == 4) { TT=sel,DC=5¢2;TC=s¢3; }

194

195:

196; /* ** display solutions ** */

197 equatn(rosl),

198: printf{* ‘\t%s = %.3g %s\n’’ ,astable[ms].parm,sln,astable[msi].msg),
199: equatn(ms?);

200: printf{* ‘\t%s = %.3g %s\n"*,astable[ms2].parm,sin,astable[ms2] msg);
201

202; printf{*‘\t%s = %.3g : %s = %.3g : %s = %.3g \n"’ ,astable{m1].parm,sel,\
203: astable[mn?2) parm,se2,astable[m3].parm,se3),

204:

205: j4 wuxsensaws ERROR MESSAGES ##»*sswnsx »/

206:

207:i{DC > 333) {

208 prntf{* W**** DC must be less than 0.333. ***"\n’"),

209: new_ent(ml,m2,m3); }

210:

211:fTT<0 || DC<0 || TC<0 || RA<O || RB<0) {

212: printf{**\t*** Negative values for any parameter not acceptable. ***\n””),
213; new_ent(ml,m2,m3);)

214

215 printfi*\n\tDo you wish to continue with new nput <Y/N>?"*),

26

216; repeat(),

217}

218:

219. /* = repeat option = */

220: void repeat() /* from ast_calc() */

221 (

222: char venfy,

223 vernfy = getch();

224 if{toupper(verify) = *N’) exit();

225: main();

226:}

227

228: /* == parameter scaling — */

229: void sca_par(muiti) /* from ast_calc() */

230: char multi;

231: {

232 iftoupper(mult) = ‘S’) { sen = sen*le+6; retum; }
233: else if{toupper(multi) == ‘T’) { sen = sen*le+3; retum;)
234: else if{toupper(multi) = ‘U’) { sen=sen*1; retumn; }
235

236: else if{toupper(mult)) = ‘M) { sen=sen*l, retum; }
237 else if{toupper(multi) = ‘N’) { sen = sen*le-3; return; }
238: else if{toupper(multl) = ‘P’) { sen = sen*1e-6; retum; }
239:

240; else iffttoupper(multi) = ‘O") { sen = sen*1, return; }
241: else ifltoupper(mult)) = ‘K’) { sen =sen*le+3; retum;)
242 else ifftoupper(multi) == ‘L") { sen =sen*le+6, retum; }
243}

244:

245: /* = solution calculations =*/

246: void equatn{egn) /* from ast_cale() */

247, int eqn;

248: {

249: ifleqn==0) { sln = 693*(RA+2*RB)*TC; TT = sin, return;)
250: ifteqn==1) { sin = RB/(RA+2*RB), DC = sln; return; }
251 ifteqn==2) { sln=1.443*TT/(RA+2*RB); TC =sln; return; }
252: ifleqn==13) { sln=RB*(1-2*DCYDC; RA = sin; return; }
253: ifleqn==4) { sin=DC*RA/(1-2*DC}, RB = sln; return; }

254 ifeqn—5) { sln = (TT-1.368*RB*TC)/(693*TC), RA = sln; retum, }
255 iffeqn==6) { sln=TT*DC/ 693*TC), RB =sln, return; }

256: if{eqn=7) { sln = (TT- 693*RA*TC)/(1 386*TC); RB = sln; retum; }
257:}

258:

259. /* = new parameter selections =—*/

260: void new_ent(rnl,m2,m3) /* from ast_calc() */

261: int ml,m2,m3;

262

263; prntfl* “tSelect new values for %s, %s, and %s for calculation.\n’*\
264; astable[rn1).parm astable[m?2)] parm,astable[m3].parm),

265:)

Listing. 2. The source code for TIMR.C.

IC MONO EQUATIONS AND VARIABLES USED IN MONO.C

PROGRAM VARIABLES

MENU MONO EQUATIONS mdims ml m2 m3 SOURCE/LIMITS

A 9600 R=3125*T/C*(1+7R) 017 0 1 2 Fairchild
T=3R*C*(1+07/R) 01 1 2 0 R:5-25K
C=3125*T/(R*(1+.7R)0 9 2 0 1 C: ANY

B 9601 R=3125*T/C*(1+7R) 117 0 1 2 National
T=32*R*C*(1+0.7R) 1 11 2 0 R:5-25K
C=31D5*T/R*(1+7R) 1 92 0 1 C:ANY

C 9602 R=3226"T/C*(1+I/R) 218 0 1 2 National
T=31*R*C*(1+I/R) 221 2 0 R:5-25K
C =322T/R*1+1/R) 2102 0 1 C: ANY

D 74121 R=1.443*T/C 3190 1 2 Texas Inst.
T=.693*R*C 33120 R:1.4-40K
C=1.443*T/R 3112 01 C: ANY

E 74127 R=3125*T/C*(1+7R) 417 0 1 2 Texas Inst.
T=3R*C*(1+7R) 411 20 R:5-50K
C=3.125*T/R*(1+7R) 4 9 2 0 | C: ANY

F 74123 R=357*T/C*(1+7R) 520 0 1 2 Texas Inst.
T=28*R*C*(1+7/R) 541 2 0 R:5- 50K
C =3.57T/R*(1+.7/R) 5122 0 1 C: ANY

G 74LS123 R =2.22*T/C 621 0 1 2 Texas Inst.
T= A5*R*C 65120 R:5-50K
C=2111*TR 6132 0 1 C: ANY

H 74221 R =1443*T/C 719012 Texas Inst.
T=_693*R*C 73120 R:2 - 40K
C = 1.443*T/R 7112 0 1 C: 1000 MFD

174LS221 R =1.443*T/C 8190 1 2 Texas Inst.
T=693*R*C 83120 R:2-100K
C=1443*TR 8112 01 C: 1000 MFD

The Computer Journal / #58

National
R ANY
C: ANY

4201

T/IC

T=R*C
C=TR
also the 4538 Motorola, RCA

R

J174C221

555/556 ASTABLE TIMER EQUATIONS

D(HZ+YH)EB9D =T+ =] ¥ 58 Uru 88s) pus Jiesl) JaBOLD ()M 11 (PAIDSULOO § Pue
:31 poused (303 Mg SNy T suld) p andly Ul UMOUS S8 PEIDBUUCD 31 UNDIIS BY 5|
0 ("y) £69'0 = 21 NOLLYY 34O 218V.LSV
:AQ (MOjf INDINO) BT} sBINPIP S PUY
(% +) £69°0= 4) ‘SARIOD Sl SNOLEA 1O} SEN|BA
:AQ UK 51 (UBIY INCINO) SRy BBIEYD 04y) 2 'H JO VORRUKILINEP AsEs Jo) ydesbouiou B 51 £ anbry
3 23 i ,
m = g3533% oo oISY S FUNDIS - Bupablin sy
3§ 5 BBESgpel’e 40 Aujiqissod Aue pioas 03 04 03 PaIdAULOD 8 3 INR
= o mmﬂﬂﬂﬂﬂﬂ “Hh POPUSLILIODAS 51 I ‘I8N U1 JOU 1 UONIDUNS 1088 N UM
“ [L1 L0]
.!».n!-ﬂh“ﬂp“ﬂ »l]n..lh» *paijdde uieBe s1 o5)nd JabB6113 ® juun BINS
S 8 _ T 0| BYY U1 UIBWRI LI [{1M INAINO By “{p uid) feuruue
_ - mw mmmmmmmm % : . a2 9yl 01 oNnd ANEGRU § JO uoneddde Mg Aq
S - g2 & ss=Si=saw~ “ A ; v W0 SILE BULINP 1353 9Q UED LINDIID #Y JBAIMOH “3INDIND
By m ERY m - M 3 QM ww =4 g Z o I\ LA Y1 195449 10U |IM asnd 1280111 B 4O UOREIN DR Iy
3 mm B OZE m E m SERREREE ¢ - @ Y81y 51 INING S UM PAD Bunwy R Bung
[y 1)))w .m ; 5 ‘@
mmm.mw.m%w mm % : | Suisojeaep SqEISOUOW T JUNDIE
Erefoiis 3r 2 § T i
$IE 235k m. 98 S ! P [p— taee Ty
MMWI“MW@ et Bam < fmm o m T .W -E“.I)ﬂ.lo].l.h“l ‘l;.d
?(mmww m“\ .Mu MI : b - uOIIRIPCO JO — g
@ ' ~” L o Lo Mo - v
,o.%ﬂ__ " __m_.ﬂ.__ I Vm"2“llM00000 m POW SID Ul PARIUID SWLIOJIAEM A SMOUS & anliy |
I —~— € ! L e e Vv WV
lgp3388 £f 3%0:0IEEIIII G
= R E EE-IN 5= oS m oo Tem G "abejoa Ajddns ay) o Juspuadapu; aie Asusnbay 3yl 8104
. . m m.,m mw ! i M M -34ay) puk ‘sawil abueyosip pue sbreyo Ay ‘apois pasabbin
gl : : e H ' -39 22
- o g8 = , . .MM "y ul sy A E/T pus A £/1 usamiaq sabueyonp
5 B @ B3 : . & pue sabayo 10196080 M ‘UORRINIO JO GPOW SIY U|
(58 3 T = 25 ; : ’
2% 8 g = , og 93592 2 I
Su o 225 5918 S8E2E28x ﬁm - !
T @29, CC,M a wuty ‘y 3UNDI4 t I
,m_m. 3 25 z 'EIEERBREE ~ 3
E55385 £353§ MUHBCDEC,D,E,D,E,E, 3 *
S idSdddddTId & T *Ajddns Jo Juspuadapu 51 [eusRuE BuIL Ay
I—l L 3 ‘abeyjoa Aiddns 0) [RuUOILIOdOAd ARSSNP Y10q e Jole.ed
== _ " . 3 -0 MR JO (0AB Proysauyl 3y pue abieyd ap puIg
= @ ‘UONIACO JO SPOW NIl Ul PRMINAD SwiojIMEm A
S o - SMOYS Z asnBij "BS MO| K1 0L INDING WA SIALP pue
g m w3 N 40108ded o). 3aB.8LPSIP LIS I YPIYM dojy-diyy Ayl IS
- < < . . 1 U JOIRIRDWOD ®i] "IV £/Z siEnba beljoa wp awn
5 k= . zw PIYM JO PUD M 18 "IVY '] = 1 4O pouIRd ¢ 10) Ajen
L 1 1 Uy 103100de) A ssouoe ABeoA K|
8 0 [o g
< = 1 sImsouoy °L IWNOIL
WM g ° ! =
= 7 O . gy O .l -
) Sy . m vi <
m ﬂ M WM NA M m o= au.v ;-i-tHn 3 .w av01 _di0.
= U B B nm m“ .nl.a "$4O1SISA i :nv A1Ivinon
.W o - oA BT JO ONEI A AQ 198 Ajesoaxd aq AR 8pdAd e ey L 3 v
W =R Anp sy snyy "9y yBnosyl sabmyosp pus By + Yy Tousn “
- _z S m m m ybnong seBieyo JOIOERdED JRUININS A JOIRIGIAINW rre W
© o e ..m o} snalu m - ARpeg suny ‘€ 3WNOIF w S ovor.me
—_— e p———- I3 Z [0} t —0 A1Tvmon
g 5 N o & INVIITe R TN
o o~ 5 = e = Avi30 3w - e _
Qe see £ £ m = 2 SO8L Bl Simeewel m) TESITRL '3 F I
coo = & 2 ™ s e il " "o
s == 3 2 &8 m - \ w0 e 0 A g
S =] w = C e
\\W\m&/ .m i m el m .m 5 \Q \\w\ - ‘ybiy INAING Y SIALP puUE JOLIDRDRD A SSOIDE MADIID
2238 B £ 2 a8y T4 S w = LIOUS 2 SOSDJAL LHOG LIIYM 198 st dopy-dijy ‘2 uid o1
Sy foom & £ g &8 0 \ \ \%\q E 304 g/1 WeL 530} 40 asind 19881 AnEBaU B 4O uonEoNd
OPL R¥s Esne §§ 2 S > /A & -de uod() 19N M ap1sur J0Is1sUR ¢ AQ pebieyonp ply
e ﬂ o e el MM e £5 s =z m w \\ \ \, g Ajenius 81 Jolideded [Rwnxe ayy (g asndiy) Joys-auo
___:_ﬂ..ﬂ_, Loan __.._._n__. .mm ,m 2 — m = " 2 ¥ 5B SUOIIOUN) JAW MA “UONEIICO JO POw SUR Y|
MO SE585 mRTc e & g S X w \\\
s mu £ g .m 2 T - NOLLYH34O 378V LSONOW
-3 wy L .
g & 4 = O m. 7o)
< a g 2
M 2 £ 2 ﬂ m 2 m uonBuULON suoieddde

27

The Computer Journal / #58

. ‘Special Feat:ure' | ~ FORTH MULTITASKING IN A NUTSHELL

. ~ Advanced Users

Forth Internals

By Brad Rodriguez

Multitasking in Forth is very simple, incredibly powerful...and
widely misunderstood. This talk will describe what multitasking
can do, and when it can be profitably used. The most common
Forth multitasker -- the cooperative, round-robin model - will
be explored in general terms. Example code will be given for
F83, which will be used to illustrate how to create and control
parallel tasks, protect shared resources with semaphores, and
pass messages between tasks. Preemptive and prioritized multi-
taskers will be mentioned briefly.

INTRODUCTION
What is multitasking?

Multitasking is the ability to run several independent programs
in a single CPU, apparently simultaneously. Of course, a
single CPU can only run one instruction at a time. The illusion
is created by switching the CPU very quickly -- hundreds of
times a second -- among several different programs. Each of
these programs is called a ‘‘task,”” hence the name
. “‘multitasking.”’

A popular fallacy is that you need a big CPU, like a 68000, in
order to do multitasking. This is simply not true. Any CPU
can multitask; I've dong it on Z80s and single-chip Z8s.

Another fallacy is that you need a real-time clock interrupt to
“‘time slice’’ the tasks. While some multitaskers do indeed
work this way, the Forth multitasker does mot. You can
multitask without interrupts, and with no special hardware
support at all!

It is important to distinguish between multitasking and
multiuser. Multiuser systems are those that support multiple
terminals, and give several people the illusion of working each
on his own computer. Multitasking is simpler: there is only
one uscr, but he can have several things running simulta-
neously. Unix is multiuser. Amigas, Macintoshes, and Win-
dows PCs are multitasking.

Occasionally, in a computer science text, you will see
multitasking called multiprocessing. 1 prefer to avoid this
usage. To me, multiprocessing means several CPUs operating
in parallel. If it’s on a single CPU, I call it multitasking.

28

When should multitasking be used?

There are several situations -- some more obvious than others
-- which can benefit from multitasking.

Parallel operations. Some computer applications just naturally
have several things running at once. An embedded process
controller probably has to keep the control loops running, even
while the operator is typing commands on the keypad. Net-
work communications generally have to be maintained while
other things are going on. And usually you’d like to be able
to do something else while the printer is grinding out a long
listing. All of these are candidates for multitasking.

Using idle time. Many computer programs spend a lot of time
waiting — maybe for a keypress, an external event, or a data
transfer to complete. Sitting in a wait loop is a waste of good
CPU time! Multitasking allows the CPU to be doing some-
thing else while waiting for an event.

Coroutines. Sometimes you need to break out of a program ““in
the middle.”” For example, I recently wrote a command pro-
cessor which needed to stop and wait for a keypress at a deeply
nested level. Multitasking allows a program to be suspended
at any point, and later resumed, with no special effort on the
part of the programmer.

Clarity and ease of programming. Often a program is easier
to write, and its logic is more obvious, if you use the facilitics
that a multitasker gives you. Sometimes an algorithm is best
expressed procedurally, in terms of waiting for an event -- even
when you know the CPU can’t just sit there and wait. I could
have written the command processor using a huge state table,
and entered the routine ‘““at the top’” on every keypress -- but
it would have been much larger, and impossible to read and
maintain. Multitasking adds WAIT and PAUSE to your
“‘programming toolbox.”” You just use them naturally, and the
multitasker takes care of the details.

HOW FORTH MULTITASKING WORKS ‘‘INSIDE”’
What each task requires

What is needed to support multiple Forth tasks?

Separate programs. In most multitasking applications, each

The Computer Journal / #58

task will run a different program. In single-user Forth systems,
these need not be in separate dictionaries; they can simply be
Forth words with different names.

In multiuser Forth systems, several people may be adding
definitions at the same time. So, each user needs some RAM
for a private dictionary. F83 does this. (How multiple dictio-
naries are managed, and linked to the ““main’’ Forth dictio-
nary, are beyond the scope of this article.)

Re-entrant kernel code. We'd really prefer not to have a
separate copy of DUP or FIND for each task! Code which can
be shared by several tasks simultaneously is called *‘re-en-
trant.”” Among other things, re-entrant code can’t leave im-
portant data in global variables. Fortunately, Forth code, with
its use of stacks, tends to be naturally re-entrant, and the
‘‘cooperative’’ multitasker relaxes some of the restrictions on
temporary variables. Most Forth kernels are fully re-entrant.

Private stacks. Obviously, each independent Forth program
will need its own parameter and return stacks. So, each task
has some RAM for its stacks, and also has its own parameter
and return Stack Pointers.

Private ‘‘user areas.”” Some things simply must be kept in
variables, and yet will have different values for each task. The
“bottom’” stack addresses SO and RO are two examples; the
BASE for number conversion is another. So, each task needs
a private RAM area for variables, called the user area. Differ-
ent Forth kernels may keep from six to several dozen variables
in the user area. Most Forths provide a ‘‘user variable’” which,
instead of returning an absolute address, indexes into the user
area of whichever task is currently running.

The user areca is essential to hold certain task control data:
among other things, the “‘saved’” stack pointer, and the link to
the next task. Both of these will be discussed shortly.

Private buffers. Certain buffers must exist privately for each
task. One example is the PAD buffer which is used for numeric
output. If two tasks tried to display a number at the same time,
using a single PAD, nonsense would result! Such buffers may
be kept in the user area, or (in multiuser systems) in the private
dictionary.

Multiuser systems also need separate Terminal Input Buffers.
Usnally, though, a single set of disk buffers is shared by all the
tasks.

Switching tasks

Most Forth systems use the simplest of multitasking schemes:
the “‘round-robin, cooperative’” multitaskcr. Round-robin
means that each task takes its tuin at the CPU, one¢ at a time,
in a fixed sequence -- a big loop of tasks. Cooperative means
that each task has the CPU as long as it wants, and releases the
CPU only when it’s ready -- nothing will “‘grab”’ the CPU
away from a task.

The Computer Journal / #58

Figure 1 shows the RAM atlocation for a three-task Forth
system. The private areas described above are usually grouped
together for convenience. The dictionary and the disk buffers
are common to all of the tasks.

Switching from one task to another -- that is, from one program
to another -- requires three steps. ‘

a) Save the state of the current program. Everything necessary
to restore this program -- to exactly the point where it was
suspended -- must be saved. This is called the “‘task context,”
and may include the CPU’s program counter, flags, and reg-
isters, as well as data in RAM.

In Forth, most of the task context is on the (private) parameter
and return stacks, and so is safe from alteration. But there are
four crucial values which are so frequently used that they are
usually kept in CPU registers:

SP - the parameter Stack Pointer

RP - the Return stack Pointer

IP - the Interpreter Pointer

UP - the User Pointer (base address of the user area)

These four registers must be saved and restored when the task
is switched. (It turns out that we don’t need to save the CPU’s
Program Counter, since we never change tasks in the middle
of a CODE word.)

b) Select the next task to run. This may be done in fixed
rotation, or according to some priority scheme.

¢) Restart the new task according to its saved context. This will
resume execution of the new task at the point where it was last
suspended.

The task switch in F83

The Forth word which switches tasks is traditionally called
PAUSE. It must do the following:

a) Save the IP, RP, and SP. Typically two of these will be
pushed on a stack, and that stack’s pointer will then be saved
in the user area. We don’t need to save UP; you’ll see why in
a moment.

b) Get the address of the next task’s user area. This is what
the LINK variable in the user area is for: it contains the address
of the next task in the round-robin sequence. (The tasks are
thus chained together in a linked list.) Note that this link gives
you the UP (user area address) for the new task! This is why
UP doesn’t need to be explicitly saved.

¢) Restore the IP, RP, and SP of the new task.

d) Continue Forth execution!

29

The time it takes to do this is called the ‘context switch time,”’
and is an important figure of merit for multitasking systems.
Since Forth systems only have to save three CPU registers,
their context switching times are quite fast -- under 10 micro-
seconds on some 8-bit CPUs!

F83 on the IBM PC uses some tricks to improve performance.
(Refer to Figure 1.) In F83, step (b) is performed by jumping
into the next task’s user area. In this area is a code fragment
(INT 80h) which executes a RESTART routine. This RE-
START routine does the step (c) described above.

Why does F83 do this? A task which is not ready to run can
be “‘put to sleep’’ by changing the INT 80h to a JMP instruc-
tion. Then, when PAUSE jumps to this task, it immediately
jumps to the next task. The sleeping task is skipped in only one
machine instruction!

You can see that if all the tasks had JMP instructions, the
round-robin loop would be simply a loop of jumps. Of course,
the CPU would then be stuck in an infinite loop! Usually,
several tasks will be ‘‘awake’” with INT 80h instructions.

F83’s PAUSE and RESTART are coded as follows:

CODE (PAUSE)
IP PUSH save |P on parameter stack
RP PUSH save RP on parameter stack
UP #) BXMOV SP 0 [BX] MOV save SP in user area
BX INC BXINC BXINC BXINC calculate address of next
0[BX] BX ADD BXINC BXINC task from (relative) LINK,

BX JMP C; then jump to that task

CODE RESTART entered from an INT 80h instruction
-4 # AX MOV
BX POP get return adrs saved by INT 80h
AX BX ADD adjust it to the start of user area
BX UP #) MOV make this the current UP
AX POP AX POP clean up INT 80h leftovers
STI
0 [BX] SP MOV restore SP from user area
CcLi
RP POP restore RP from parameter stack
IP POP restore IP from parameter stack
NEXT C; continue Forth execution at new IP

USING A FORTH MULTITASKER
Creating a task
All Forth systems start with one task. (There’s always at least

one program running!) New tasks can then be added to the
system in two phases, which I call creation and activation.

Creating a new task involves two steps:
a) Reserve RAM for the task. Space must be allocated for its
two stacks and its user area. In multiuser systems, a private

dictionary must be rescrved as well.

b) Link the task into the round-robin list. This is a simple

30

linked-list insertion using the LINK field.

These steps_are performed only once. Obviously, reserving
RAM twice for the same task is a pointless waste of RAM...and
can lead to confusion if other tasks need to know where this
task is located. Linking the task into the list twice is more
subtle, and more insidious: usually it ends up destroying the
round-robin loop!

In F83 on the IBM PC, steps (a) and (b) are performed by the
word TASK:. This word expects, on the stack, the number of
bytes to reserve for the new task. 256 bytes are reserved for the
return stack, and the rest is divided between the user variables,
the private dictionary, and the parameter stack. Thus:

HEX 400 TASK: SCREEN-CLOCK

defines a task and allocates a total of 1024 bytes to it. The
newly defined word SCREEN-CLOCK will return the base
address of this 1024-byte area (the base address of the user
area).

Activating a task

Once the task has been created, it can be ‘“‘activated’” any
number of times. This involves two steps:

¢) Initialize the task context. Several user variables must be
initialized, and in F83 the INT 80h instruction must be inserted
in the user area. Also, the initial values for the SP and RP must
be stored in the stacks or user area in such a way that they will
be correctly loaded into the CPU registers when this task is
“‘resumed’’ for the first time.

d) Specify the code to be executed by that task. The initial
value for the IP must be stored in the stacks or user area, too.
When the task is ‘‘resumed’’ for the first time, this will be
where execution begins. It must point to a fragment of high-
level Forth code.

(Some Forths may only perform step (c) once, in which case it
may be done as part of task creation.)

After the task has been activated, it will lie dormant until its
turn in the round-robin loop. Then it will begin executing the
Forth code specified in step (d).

In F83, the RP, SP, and IP are initialized by the word ACTI-
VATE. F83’s ACTIVATE must be used within a Forth word
-- it cannot be used interpretively. It expects the address of the
task on the stack, and is immediately followed by the high-level
code the new task is to run. For example:

. START-CLOCK SCREEN-CLOCK ACTIVATE BEGIN .CLOCK PAUSE AGAIN ;

< > < >

code performed by ‘“main’ task code performed by
SCREEN-CLOCK task

The Computer Journal / #58

START-CLOCK is executed by some other Forth task --
typically the “‘main’’ (initial) task. It then “‘activates’ the
SCREEN-CLOCK task to perform the code fragment BEGIN
.CLOCK PAUSE AGAIN. The main task exits this word
immediately after ACTIVATE.

Other task control in F83

" The functions described above -- PAUSE, TASK:, and ACTI-
VATE -- ar¢ all that you need to establish a multitasking Forth
system. But F83 provides some additional words for conve-
nience:

taskaddr SLEEP puts a task to sleep, by inserting the JMP
- instruction in the user area.

taskaddr WAKE awakens a task, by inserting the INT 80h
instruction.

STOP just puts the running task to sleep, and then switches
to the next task. This is equivalent to my-task SLEEP
PAUSE.

MULTI enables the multitasker.

SINGLE disables the multitasker, by changing the action of
PAUSE to a “‘no-op.”” (PAUSE is a DEFERred word for just
this purpose.) Whichever task does SINGLE will keep control
of the CPU.

APPLYING THE FORTH MULTITASKER

~The PAUSE : running programs in parallel

The simplest use of a multitasker is to have several programs
running in parallel. This requires only that every program
have its own task, and that every program obey two rules:

a) Every task must PAUSE periodically! This is how the task
voluntarily surrenders the CPU to the other tasks in the system.
If there are no PAUSESs, this task will never release the CPU,
and no other task will ever run!

Most Forth I/O words, such as EMIT, KEY, and BLOCK,
containa PAUSE. The assumption here is that /O is slow, and
so other tasks should have some time at the CPU.

b) The code executed by the new task must never return!
Remember, this code was not entered from a subroutine call --
it is the very first code executed by this task. Thus, there is no
return information on the return stack! (Boom.) In general,
the *“topmost”” Forth code of any task must be an endless loop.
In F83, the word STOP can be used to end a task, instead of
looping.

There is also a rule for Forth programmers during the test and
development phase: do not FORGET tasks! Remember, once

The Computer Journal / #58

a task is created, it is linked into the round-robin list. If you
-- accidentally or intentionally -- reclaim a task’s RAM area
with FORGET, and then put other definitions into that RAM,
you will destroy the round-robin linked list! (Again, boom.)
It’s safest to put all the task creation first in your code, and then
never FORGET back that far.

Example #1: the on-screen clock
Note: the example code given in this article is written for F§3

version 2.1.0 for the IBM PC. F83.COM seems to be distrib-
uted with the multitasker aiready installed. Type

¢ TASK: .
to find out. If TASK: is not defined, you will need to install
the multitasker by typing

OPEN CPU8086.BLK 21 LOAD OPEN UTILITY.BLK
52 LOAD

Screen 1 of the listing is the code for a simple on-screen clock.
This code creates a second task which continually displays the
time of day in the upper right-hand corner of the screen.

@TIME is a Forth word to return the IBM PC clock time.

We want to use the Forth display words, but we don’t want the
clock task to interfere with the main task’s display. After we
reposition the cursor to the top right of the screen, we need to
be able to put it back where it was, The words @CURS and
'CURS invoke BIOS functions to get and set the current
display cursor.

.TIME displays the time in hh:mm:ss format. It illustrates the
use of @CURS and ! CURS to get the cursor position, set a new
position, and restore the original position. Note the use of
SINGLE and MULTI around TYPE. TYPE does many
EMITs, and each EMIT does a PAUSE. This would switch
back to the main task while the cursor is in the wrong position!
Rather than redefine EMIT to eliminate the PAUSE, we can
simply shut off multitasking for the duration of the TYPE.
(This is, however, quite crude.)

The definition and activation of the SCREEN-CLOCK task
have already been described. Note that you must specify
DECIMAL from within the clock task’s code. The number
base is a user variable, and typing DECIMAL from the key-
board will change the main task’s number base, not the clock
task’s.

Afier loading this screen, type

START-CLOCK MULTI
to activate the clock. You will see the clock appear in the
corner of the screen. Type WORDS and observe that the
displays do not interfere with each other. Then type SINGLE
WORDS and compare the speed when the multitasker is

31

switched off. The clock display in this example consumes far
too much CPU time; it redisplays the clock dozens of times
every second, when only once per second would be adequate.
A better version would wait for the time to change before
redisplaying.

Example #2: the round-robin cycle counter

Screen 2 is Forth code to count passes through the round-robin
list. Similar code is supplied as an example with F83; this code
is different only in that it displays the cycle count in the upper
right corner. Load this screen, and type

START-COUNTER

1o activate the counter. (You may have to turn MULTI back
on.) On my 12 MHz AT, with the on-screen clock task also
running, I see about 50 counts per seccond. This means that
each task is getting the CPU every 20 milliseconds.

Waiting without pain

Programmers secm to write a lot of wait loops. Most wait loops
fall into one of three categories:

a) polling an IO device. Sometimes you must use polled I/O.
The hardware may not have a “‘data ready’” interrupt. Oper-
ating system software may only offer a *‘check status’” function
-- such as the keyboard under MS-DOS.

b) awaiting an interrupt. When the hardware supports inter-
rupts, you may have to wait for an interrupt to occur. For
example, a disk controller using DMA will issue an “‘end of
transfer’” interrupt when the operation is complete.

¢) waiting for another task. In multitasking applications,
occasionally one task has to wait until another task has accom-
plished something.

Sometimes, waiting is just the obvious way to write a program!
Recall the example of the command processor, which has to
wait for a keypress to be received and processed.

Wait loops burn up CPU time. Even worse, trying to wait for
more than one thing at a time can lead to some Byzantine
compound loops! A multitasker solves both of these problems.

One simple addition changes the wait loop from a CPU hog to
an efficient programming construct. Simply insert a PAUSE
in the loop! This ensures that, while this task is waiting, all
the other tasks in the system will get to use some CPU time.

Most multitasking Forth kernels write their I/O this way. For
example, the basic definition of KEY
: (KEY) BEGIN (KEY?) UNTIL 08 BDOS;

is changed in F83 to

32

: (KEY) BEGIN PAUSE (KEY?) UNTIL 08
BDOS ;

As long as no keypress is ready, this task will PAUSE repeat-
edly, surrendering the CPU to the other tasks in the system.
The polling represents a slight overhead: on every pass through
the task list - typically every few milliseconds -- this task will
execute PAUSE (KEY?) UNTIL. If (KEY?) is not too
complex, this overhead is negligible.

Note that, even if a keypress is ready, the word (KEY) will do
at least one PAUSE. This is usually desirable. If this is not
desirable, a BEGIN..WHILE..REPEAT loop can be used
instead.

What if all of the tasks are waiting for something? Then the
system ends up spinning in a much larger wait loop - checking
each task in turn for its ‘‘wake up”’ condition, and moving on
to the next. The first task whose poll is successful will then
continue execution. With no special programming effort, the
multitasker automatically checks a set of events, and starts a
different program for each event!

Be aware that putting a PAUSE in the loop will significantly
reduce the polling rate -- from microseconds to milliseconds.
If fast response is essential, or there is a chance that an event
can be “‘missed,”’ some other approach is needed. Interrupts
are usually best in this case.

Shared resources and semaphores
The problem of mutual exclusion

Once you have several tasks running in parallel, a new problem
can arise: access conflicts. This happens when two tasks
attempt to use, simultaneously, some device or resource which
can only be used by one task at a time.

Consider, for instance, a disk controller which requires two
time-consuming operations to access the disk: a seck, and then
a read or write. (Many controllers are like this; the Western
Digital 1791 is one example.) Suppose Task A does a seck,
which takes a few hundred milliseconds. While it is waiting,
other tasks are running. Now suppose that Task B tries at this
moment to access the disk. It issues its own seek command,
conflicting with the command issued by Task A. When the
seek completes, and Task A resumes, it will be at the wrong
location on the disk. (Worse, since only one completion signal
is issued by the controller, one of the tasks may wait forever for
its seek to finish.)

Or consider the on-screen clock and cycle counter examples:
while one task had altered the display cursor, other tasks had

to be prevented from using it.

Or consider the printer. If one task -- maybe a background
printing task - is outputting to the printer, we certainly don’t

The Computer Journal / #58

want another task sending output at the same time.

In the example programs we used the crude solution of switch-
ing off the multitasker. This is usually not practical - it defeats
the whole purpose of multitasking! We need a better solution.

Fortunately, this ‘‘mutual exclusion” is a classic problem in
computer science, and several solutions have been devised over
the decades [TAN87]. One of the simplest and most elegant
is the “‘semaphore,”” invented by by E. W. Dijkstra in 1965.

The semaphore

In its simplest form, a ‘ ‘binary semaphore”’ is a flag associated
with a resource. Two operations act on semaphores: WAIT
and SIGNAL. WAIT checks to see if the resource is available.
If so, it is marked ‘‘unavailable’’; if not, the CPU is released
to other tasks until the resource becomes available. SIGNAL
just marks the resource ‘‘available.”

In Forth, these can be written

: WAIT (addr -)
BEGIN PAUSE DUP C@ UNTIL \wait for nonzero = available
0 SWAP !; \ make it zero = unavailable

: SIGNAL (addr --)

1SWAP ! ; \ make it nonzero = available

(These are also in screen 3 of the listing.)

Dijkstra observed that the operations of testing and setting the
semaphore must be indivisible. In the cooperative Forth
multitasker, all Forth code is indivisible until a PAUSE is
executed, so these definitions will work as written. In pre-
emptive multitaskers, or any application where interrupts can
affect semaphores, interrupts must be disabled within WAIT
and SIGNAL (except for the PAUSE).

It is a subject of some debate whether SIGNAL should include
a PAUSE. Adding a PAUSE ensures that a task which is
blocked on that semaphore will be awakened soonest, thus
maximizing the use of the resource. Sometimes, however, this
is not what is desired.

How semaphores are used

Every task, before using a shared resource, does a WAIT on its
semaphore, and after using the resource, does a SIGNAL.
This is sufficient to ensure that only one task can use that
resource at any time -- and yet even if one task is blocked, the
other tasks can run normally.

The semaphore is defined as a simple Forth variable. The
semaphore variable must be initialized to a nonzero value, to
indicate that the resource is initially ‘“available.”” This should
be done when all other variables are initialized: when you load
the application (on a PC), or as part of the startup code (in an
embedded application.)

The Computer Journal / #58

For the disk example described above, the Forth code may look
something like
VARIABLE DISK-SEMAPHORE

: READ-SECTOR
DISK-SEMAPHORE WAIT
SEEK
READ
DISK-SEMAPHORE SIGNAL ;

Now consider the situation with two tasks trying to access the
disk simultaneously:

Task A Task B

WAIT

SEEK (100 msec)

WAIT
READ (100 msec) |
|----task #2 is blocked!
SIGNAL |
SEEK (100 msec)

READ (100 msec)

SIGNAL

Task A performs a WAIT, sees that the disk is available, and
proceeds to do its SEEK. Task A then waits with PAUSE until
the seek is complete, so that other tasks can use the CPU. At
this point Task B requests the disk resource with WAIT.
Thanks to Task A, the resource is busy, so Task B is put into
a wait loop -- waiting not for the seek to complete, but for
DISK-SEMAPHORE tobe set. This won’t happen until Task
A is finished seeking and reading. So, Task A is waiting for
the disk, Task B is waiting for Task A’s SIGNAL, and the
other tasks in the system are free to use the CPU.

The beauty of this approach is that the WAIT and SIGNAL
are identical for all tasks, so they can be made part of the
common routine READ-SECTOR that all tasks use,

Semaphores for intertask signalling

The WAIT operator is general-purpose: it can be used any
time you need to wait for a RAM location to become nonzero.
Recall that two of the uses of wait loops are to wait for an
interrupt to occur, and to wait for a signal from another task.

To wait for an interrupt, simply WAIT on a variable you have
defined for the purpose. The interrupt routine then just needs
to store a nonzero value in that variable. (Often this can be
done with a single machine instruction, €.g., increment.)
Waiting for another task is exactly the same, except that the
other task can use the high-level SIGNAL word to store the
non-zero value.

Note that, in these cases, the semaphore should be initialized
to a zero value.

33

Problems with semaphores

Semaphores are not foolproof. They are susceptible to *‘dead-
lock,”” where two tasks, each having grabbed one of two
resources, are waiting for the other resource to become avail-
able. One solution to this is the ‘“monitor,”” also described in
[TAN87], which can be implemented if you have semaphores.

_Breaking out of the depths

What about the problem of *‘breaking out’’ of a deeply nested
program, preserving all of its nesting information, and then
returning to it at some future time?

Surprise! This is exactly what PAUSE does! All of the return
information, temporary variables, etc. which need to be pre-
served, are all part of the task context. The task context, you
will recall, is the information which is saved when tasks are
switched. So, to suspend a task until some future event, simply
do a WAIT or some other multitasking wait loop.

Returning to the command processor example: when I rewrote
this application, I created a word KEYPRESS which waited
-- with PAUSEs -- for a keypress to become available. T also
converted all of the variables used in command processing to
user variables. KEYPRESS is used in dozens of places in the
program, as the command processor works its way through its
logic tree. The command processing code is written ‘‘nor-
mally,”” with no special attention given to saving the state, or
releasing the CPU to other tasks!

Message passing

Often paratlel tasks need to communicate with each other. One
of the most-used schemes is the ‘‘mailbox,”’ an agreed-upon
place where messages can be left for a task. Mailboxes may be
statically allocated to each task -- in which case you must be
careful to have enough mailboxes -- or they can be dynamically
allocated from a pool.

Perhaps the simplest scheme, which ensures that there are
sufficient mailboxes for all the tasks, is to include a mailbox in
each task’s user area. Then, as tasks are added, new mailboxes
are too. Each task can reach its own mailbox easily, as a user
variable. Other tasks can reach that mailbox by offset from the
given task’s address. (Recall that the **task address’” is usually
the base address of its user area.)

For simplicity, we can limit messages to a single cell (16 bits
on the IBM PC). An F83 implementation of this would be:

: SEND (message taskadr --)

MYTASK
OVER SENDER LOCAL get adrs of destination's SENDER
BEGIN
PAUSE loop with PAUSE,
DUP @ until his SENDER is zero
0= UNTIL

! store my adrs in his SENDER

34

MESSAGE LOCAL ! ; store the message in his MESSAGE

:RECEIVE (-- message taskadr)

BEGIN

PAUSE loop with PAUSE,

SENDER @ until my SENDER is nonzero
UNTIL
MESSAGE @
SENDER @
0 SENDER ! ;

get the message from my MESSAGE
get his task adr from my SENDER
indicate mailbox empty & ready

MESSAGE and SENDER are user variables. (See screen 4
of the listing for their definition.) The convention here is that,
if SENDER is nonzero, a message is in the task’s mailbox.
This works because most Forth systems can’t have a task user
area at address 0000.

SEND sends the given message to the given task. Before it can
do so, it must be sure that the destination mailbox is empty --
otherwise it would destroy some other mail. So it waits, with
PAUSESs, until the destination task’s SENDER variable is
zero. Then it stores the message, and the sending task’s
address (MYTASK), in the destination user area.

RECEIVE waits for any message to appear, as indicated by
SENDER going nonzero. It then reads the message and the
sending task’s address. Finally, it clears the SENDER field,
to indicate that the mailbox is now empty.

Note that if two tasks try to send messages to the same desti-
nation, on¢ of the tasks will be blocked until the destination
task has read its mail!

This is a very simplistic message system, although adequate for
many applications. More sophisticated schemes allow a re-
ceiver to select only messages irom a specific sender, or allow
multiple messages to be queued at the receiver so that multiple
senders do not have to wait. Other extensions would allow
variable-length or string messages.

Example #3: the Print utility

Screen 5 shows a simple use of messages. This is a modifica-
tion of F83’s screen-printing utility SHOW, to run as a *‘back-
ground’’ task. Load this screen, and type

START-SHOW
to activate the printing task. (Don’t forget to turn MULTI on.)
At this point, nothing will happen. You can now type

14 SHOW

and a printout of screens 1 to 4 will start on the printer. At the
same time, you will get the “‘ok’” prompt on the screen, and you
can type Forth commands. Type WORDS, for instance,

When the printing task was activated, its first action (in START-
SHOW) was to clear its mailbox. It then waits for two
messages in a row, which it expects to be the first and last
screen to print, respectively. (We don’t care who sends these
messages, so the sending task address is DROPped after each

The Computer Journal / #58

RECEIVE.) Since no message has yet been sent, it just waits
forever, invisible to the ““main’’ Forth task.

SHOW is redefined to simply send two messages to the print-
ing task. So, when the SHOW command is typed at the
keyboard, the printing task is awakened and begins to print the
requested screens. When the listing is complete, the printing
task loops, waiting for a new print request (two more mes-
sages).

If you have a slow printer with a small buffer, you will notice
occasional interruptions in the WORDS listing being dis-
played by the main task. This might appear as if the multitasker
is not working as advertised. Actually, this is an unfortunate
byproduct of the MS-DOS printer routine. MS-DOS assumes
that a program which is printing can afford to wait, so there is
no BIOS call to test the “‘printer ready” flag. All Forth can
do is request a character be output to the printer. If the printer
is not ready, MS-DOS (not Forth) will tie up the computer
while it waits for the printer. To fix this problem, we would
have to bypass MS-DOS and write our own direct printer /O
routines.

Advanced topics

The round-robin, cooperative multitasker which has been de-
scribed is the most common Forth multitasker. Most public-
domain Forths and many commercial Forths use this approach
-- it’s simple, versatile, and efficient. But some Forth systems
have extended the multitasker to add new capabilities; and
most non-Forth multitaskers offer some of these “advanced
features.”

Preemptive multitaskers

The problem with cooperative multitaskers is that each task
keeps the CPU until it does a PAUSE. It can be very difficult
to distribute CPU time equally among the tasks; poorly written
code can ‘“‘hog’’ the CPU for inordinate amounts of time.
Placement of PAUSE instructions becomes something of an
art.

One solution is to allow a task switch to be forced upon a task,
say by a real-time clock interrupt. If tasks are switched every
10 milliseconds, it’s easy to allocate CP1J time accurately. This
also ensures that no task can tie up the CPU; and in a round-
robin system, it guarantees an upper bound on how long a task
must wait for the CPU.

Preemptive multitaskers have several disadvantages, too:

a) since a task switch can occur at any time -- even in the
middle of a CODE word -- all of the CPU registers and flags
need to be saved with the task context. On a big processor like
the 68000, this can make the context switch time much longer.
(Recall that the cooperative multitasker only needs to save four
registers.)

The Computer Journal / #58

b) words such as WAIT and SIGNAL become more compli-
cated, since they must switch interrupts off to be indivisible.

¢) since Forth code is no longer “‘normally”” indivisible, many
more semaphores are needed to enforce mutual exclusion, and
more temporary variables must be moved into the user area.

Prioritized multitaskers

Another problem is: how do you tell the system that some tasks
are more important than others?

Perhaps you want to allocate more CPU to one task than
another. Or, it may be desirable to run one task in preference
to all others, as long as it’s not waiting for an event. Or
possibly there is a ‘‘background’ task which should only run
when no other task is able to run (i.e., when all the other tasks
are waiting for something). What you need is a way to assign
priorities to tasks. High-priority tasks should run in preference
to low-priority tasks - either by receiving a bigger share of the
CPU time, or by taking the CPU completely away from lower-
priority tasks.

Priority schemes are usually associated with preemptive
multitaskers, but this need not be the case. Here’s one possible
modification to the basic Forth multitasker to implement a
priority scheme: instead of PAUSE switching to the next task
in the round-robin list, make it switch to a designated °‘first™
task in the list. This task then is the highest-priority task; as
long as it is able to run, no other task will get service. WAIT
must be modified to link to the *‘next’’ task in the round-robin
Tist.

The disadvantages of priority schemes are:

a) there’s usually more overhead involved in task switching,
since the multitasker must decide which task to run next.

b) assigning priorities is not simple. Sometimes a small
change can have a disproportionate effect on the amount of
CPU time various tasks receive.

c) in some systems, it’s possible that some tasks will never get
any CPU time.

Interrupts

How interrupts are handled can vary from one multitasker to
another.

The simplest approach is to treat interrupts completely apart
from the muititasker. Interrupts do not affect the execution of
tasks; when an interrupt occurs, the interrupt routine executes,
and then returns to whichever task was running. (Le., inter-
rupts work the same as they do in a non-multitasking system.)
Interrupts can set flags which will later be seen by various
tasks. This approach works best when the interrupt handlers
can be kept simple. It offers the fastest interrupt service time;

35

however, if the purpose of the interrupt is to “‘wake up’’ a task,
it may be many milliseconds before that happens.

A preemptive multitasker can allow an interrupt to wake up a
specific task. If the service to be performed is complex -- say,
interpreting a long message received via DMA -- then it’s
usually better to do that service in a task, rather than in an
interrupt handler. (This is because, usually, some or all inter-
~ rupts are blocked for the duration of an interrupt handler.) The
downside: in addition to the disadvantages of preemptive taskers,
this approach has a longer interrupt service time, since the
interrupt handler is more complex.

There are other variations, but most interrupt service schemes
fall loosely into one of these two categories.

Conclusion

Multitasking is a powerful tool, and like a good tool, it can
dramatically increase your productivity. The basic Forth multi-
tasker is more than adequate for many applications. Like Forth
itself, it is simple, versatile, and efficient...and easy for one
person to grasp. Add multitasking to your ‘‘toolkit’’: you will
find that many programming problems become simpler, and
some become trivial!

References

[LAX84] Laxen, H. and Perry, M., F83 for the IBM PC,
version 2.1.0 [1984]. Distributed by the authors.

[TAN87] Tanenbaum, Andrew S., Operating Systems: Design
and Implementation, Prentice-Hall [1987], 719 pp. Any worth-
while book on operating systems should describe semaphores.
- This book is recent, quite complete, and very readable. It has
an good discussion of the various problems of mutual exclu-
sion.

[TIN86] Ting, C.H., Inside F83, 2nd ed., Offete Enterprises,
1306 South <“B’’ Street, San Mateo, CA, 94402, USA [1986],
287 pp. This explains the F83 multitasker quite well. Actu-
ally, it explains most of F83 quite well: a ‘must’’ for F83 users.

F83 for the IBM PC, CP/M, and 68000 are available on the
Forth Roundtable on GEnie. F83 for the IBM PC is also
available from the Forth Interest Group, P.O. Box 2154, Oak-
land, CA 94621, and from many shareware vendors.

The source code for this article is available on GEnie as file
MULTIDEM.BLK.

T-Recursive Technology

221 King St. East, #32

Hamilton, ON L8N 1B5 Canada

36

Screen 1

\MULTITASKER EXAMPLE 1 - ON SCREEN CLOCK bjr09sep92

CODE @TIME (--hms) HEX2C #AHMOV 21INT AHAH SUB
CHALMOV AX PUSH (hrs) CL AL MOV AX PUSH (mins)
DHAL MOV 1PUSH (secs) END-CODE

CODE @CURS (~n) 0#BHMOV 3#AH MOV 10INT DX PUSH
NEXT END-CODE

CODE !CURS (n--) DXPOP 0#BHMOV 2#AHMOV 10INT
NEXT END-CODE

- TIME (hms-) O<###3AHOLD NIP## 3AHOLD NIP
###> @CURS >R 48 ICURS SINGLE TYPE MULTI R> ICURS ;

HEX 400 TASK: SCREEN-CLOCK

: START-CLOCK SCREEN-CLOCK ACTIVATE
DECIMAL BEGIN @TIME .TIME PAUSE AGAIN ;

: STOP-CLOCK SCREEN-CLOCK SLEEP ;

DECIMAL

Screen 2

\MULTITASKER EXAMPLE 2 - ROUND-ROBIN CYCLE COUNTER

VARIABLE CYCLES OCYCLES! HEX
:.CYCLES 1CYCLES +! CYCLES @
@CURS >R 40 ICURS SINGLE 6 URMULT!I R>ICURS ;

HEX 400 TASK: CYCLE-COUNTER

:START-COUNTER CYCLE-COUNTER ACTIVATE
DECIMAL BEGIN .CYCLES PAUSE AGAIN ;

:STOP-COUNTER CYCLE-COUNTER SLEEP

DECIMAL

Screen 3

\SEMAPHORES IN F83 bjr09sepS2
:WAIT (addr --) \WAIT for semaphore ready

BEGIN PAUSE DUP C@ UNTIL \wait for nonzero = available

O SWAP!: \'make it zero = unavailable
:SIGNAL (addr--) \SIGNAL that semaphore is ready
1SWAP!; \ make it nonzero = available
Screen 4
\MESSAGES IN F83 bjr09sep92
USER VARIABLE MESSAGE \a 16-bit message
VARIABLE SENDER \holds address of the sending task

FORTH

“MYTASK (—-a) UP@; \returns addr of the running task

: SEND (msg taskadr --) \send msg to the given task
MYTASK OVER SENDER LOCAL \-- msg taskadr mytask SENDERadr
BEGIN PAUSE DUP @ 0= UNTIL \ wait until his SENDER is zero
! MESSAGE LOCAL!; \store mytask,msg in his user var

: RECEIVE (-- msg taskadr) \wait for a message from anyone
BEGIN PAUSE SENDER @ UNTIL \wait until my SENDER nonzero
MESSAGE @ SENDER @ \ get message and sending task
0 SENDER!; \ now ready for another message!

Screen 5

\MULTITASKER EXAMPLE 3 - BACKGROUND PRINT UTILITY
HEX 400 TASK: SHOW-TASK

: START-SHOW SHOW-TASK ACTIVATE
DECIMAL 0SENDER! \must clear message buffer first

BEGIN
RECEIVE DROP RECEIVE DROP \--first last
SHOW
AGAIN ;
:STOP-SHOW SHOW-TASK SLEEP ;
: SHOW (first last --)

SWAP SHOW-TASK SEND SHOW-TASK SEND ;
DECIMAL

The Computer Journal / #58

MAIN

" DICTIONARY

Forth
kernel

Disk
Buffers

Smrralr
Link |-

User
Variables

Y

Private
Dictionary

'
e

A

{Parameter
Stack

A

Return

Stack

The Computer Journal / #58

TASK 2

N 8Oh

Link

User
Variables

y

Private
Dictionary,

¢
e

A

[Parameter]
Stack

A

Return

Stack

FIGURE 1. TASK CONTEXT

sl ME |

e

TASK 3

TASK 1

User
Variables

y

Private
Dictionary

v

P

iParameteﬂ
Stack

A

Return

Stack

CPU REGISTERS

UP - User Pir

SP - Stack Ptr

RP - Rin Stk Pir

IP - Interpret Ptr

37

The Computer Journal

Back Issues

Sales limited to supplies in stock.

Issues 1:to: 19 :are currently QUT
of print.. To-assist those who want
a full-collection of TCJ issues we
are preparing photo-copied: sets.
The sets will be issue 1 t0.9 and
10 to-19. Each set will be bound
with a plastic protective cover.

The price is $25 {(in US) and $35
(foriegn air mail) . Expect TWO
to THREE weeks for delivery after
payment received at TCJ. Some
single copies - available, contact
TCJ before ordering.

{ssue Number 20:

- Designing an 8035 SBC

- Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

- Soldering & Other Strange Tales

- Build an S-100 Floppy Disk Controller:
WD2797 Controller for CP/M 68K

Issue Number 21:

Extending Turbo Pascal: Customize with
Procedures & Functions
- Unsoldering: The Arcane Art
- Analog Data Acquisition & Control:
Connecting Your Computer to the Real
World
- Programming the 8035 SBC

Issue Number 22:

- NEW-DOS: Write Your Own Operating
System
-Variability in the BDS C Standard Library
: The SCS! Interface: Introductory Column
Using Turbo Pascal ISAM Files
The Ampro Littte Board Column

. Issue Number 23:

- C Column: Flow Control & Program
Structure
- The Z Column: Getting Started with
Directories & User Areas
The SCSI Interface: introduction to SCS!
NEW-DOS. The Console Command
Processor
- Editing the CP/M Operating System
INDEXER: Turbo Pascal Program to Create
an index
- The Ampro Little Board Column

Issue Number 24:

- Selecting & Building a System
The SCSI Interface: SCSI Command
Protocol
Introduction to Assemble Code for CP/M
The C Column: Software Text Filters
- Ampro 186 Column: Installing MS-DOS
Software
The Z-Column
NEW-DOS: The CCP Internat Commands
ZTime-1. A Real Time Clock for the Ampro
Z-80 Little Board

Issue Number 26:

Bus Systems: Selecting a System Bus
Using the SB180 Real Time Clock
- The SCSI Interface: Software for the SCSI

Adapter
- Inside Ampro Computers
NEW-DOS: The CCP Commands
(continued)
ZSIG Corner

- Affordable C Comptiers
Concurrent Multitasking: A Review of
DoubleDOS

38

Issue Number 27;

- 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System

- The Art of Source Code Generation:
Disassembling Z-80 Software

- Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop

Compensation

- The C Column: A Graphics Primitive
Package

- The Hitachi HD64180: New Life for 8-bit
Systems

- ZSIG Corner. Command Line Generators
and Aliases

- A Tutor Program in Forth: Writing a Forth
Tutor in Forth

- Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Fotmats

Issue Number 28:

- Starting Your Own BBS

- Build an A/D Converter for the Ampro Little
Board

- HD64180: Setting the Wait States & RAM
Refresh using PRT & DMA

- Using SCS! for Real Time Control

- Open Letter to STD Bus Manufacturers

- Patching Turbo Pascal

- Choosing a Language for Machine Control

Issue Number 29:

- Better Software Filter Design

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1

- Using the Hitachi hd64180: Embedded
Processor Design

- 68000: Why use a new OS and the 680007

- Detecting the 8087 Math Chip

- Floppy Disk Track Structure

- The ZCPR3 Corner

Issue Number 30:

- Double Density Floppy Controlier

- ZCPR3 IOP for the Ampro Little Board

- 3200 Hackers' Language

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

- Non-Preemptive Multitasking

- Software Timers for the 68000

- Lilliput Z-Node

- The ZCPR3 Corner

- The CP/M Corner

Issue Number 31:

- Using SCS| for Generalized /O
- Communicating with Floppy Disks: Disk
Parameters & their variations
- XBIOS: A Replacement BIOS for the SB1380
- K-OS ONE and the SAGE: Demystifying
Operating Systems

Remote; Designing a Remote System
Program
- The ZCPR3 Corner. ARUNZ Documentation

Issue Number 32:

Language Development: Automatic
Generation of Parsers for Interactive
Systems
- Designing Operating Systems: A ROM
based OS for the 281
- Advanced CP/M: Boosting Performance
- Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an In-
Depth Look at the FCB
- WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIl Terminal Based
Systems
- K-OS ONE and the SAGE: System Layout
and Hardware Configuration
- The ZCPR3 Comer: NZCOM and ZCPR34

Issue Number 33;

- Data File Conversion: Writing a Filter to
Convert Foreign File Formats

- Advanced CP/M: ZCPR3PLUS & How to
Write Seif Relocating Code

- DataBase: The First in a Series on Data
Bases and Information Processing

- 8CSI for the S-100 Bus: Another Example
of SCSI's Versatility

- A Mouse on any Hardware: Implementing
the Mouse on a Z80 System

- Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

- ZCPR3 Corner: ARUNZ Shells & Patching
WordStar 4.0

Issue Number 34:

- Developing a File Encryption System.

- Database: A continuation of the data base
primer series.

- A Simple Multitasking Executive: Designing
an embedded controller multitasking
executive.

- ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

- New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

- Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for CP/
M22

- Macintosh Data File Conversion in Turbo
Pascal.

- The Computer Corner

Issue Number 35:

- All This & Modula-2: A Pascal-like

alternative with scope and parameter

passing.

- A Short Course in Source Code

Generation: Disassembling 8088 software to

produce modifiable assermn. source code.

- Real Computing: The NS32032.

- §-100: EPROM Burner project for S-100

hardware hackers.

- Advanced CP/M: An up-to-date DOS, plus

details on file structure and formats.
REL-Style Assembly Language for CP/M

and Z-System. Part 1: Selecting your

assembler, linker and debugger.

- The Computer Corner

Issue Number 36;

Information Engineering: Introduction.
- Modula-2: A list of reference books
Temperature Measurement & Controk
Agricultural computer application.
- ZCPR3 Corner: Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.
- Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options
- SPRINT: A review.
REL-Style Assembiy Language for CP/M
& ZSystems, part 2.
- Advanced CPIM:
programming.
- The Computer Corner.

Environmental

Issue Number 37:

- C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers

ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER.
- Information Engineering: Basic Concepts:
fields, field definition, client worksheets.
- Shells: Using ZCPR3 named shell
variables to store date variables.

- Resident Programs: A detailed look at
TSRs & how they can lead to chaos.

- Advanced CP/M: Raw and cooked console
/0.

- Real Computing: The NS 32000.

- 2SDOS: Anatomy of an Operating System:
Part 1.

- The Computer Corner.

Issue Number 38;

- C Math: Handling Dollars and Cents With
C.

- Advanced CP/M: Batch Processing and a
New ZEX.

- C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

- The Z-System Corner. Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.

- Information Engineering: The portable
Information Age.

- Computer Aided Publishing: Introduction to
publishing and Desk Top Publishing.

- Shells: ZEX and hard disk backups.

- Real Computing: The National
Semiconductor NS320XX.

- ZSDOS: Anatomy of an Operating System,
Part 2.

Issue Number 39:

- Programming for Performance: Assembly
Language techniques.

- Computer Aided Publishing: The Hewlett
Packatd LaserJet.

- The Z-System Corner:
enhancements with NZCOM.

- Generating LaserJet Fonts: A review of
Digi-Fonts.

- Advanced CP/M: Making old programs Z-
System aware.

- C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

- Shells: Using ARUNZ alias with ZCAL

- Real Computing: The National
Semiconductor NS320XX.

- The Computer Corner.

System

Issue Number 40:

- Programming the LaserJet: Using the
escape codes
Beginning Forth Column: Introduction.
Advanced Forth Column: Variant Records
and Modules.
- LINKPRL: Generating the bit maps for PRL
files from a REL file.
- WordTech's dBXL: Writing your own
custom designed business program.
- Advanced CP/M: ZEX 5.0xThe machine
and the language.
- Programming for Petformance: Assembly
language techniques
- Programming Input/Output With C:
Keyboard and screen functions.
- The 2-System Corner. Remote access
systems and BDS C.
Real Computing: The NS320XX
The Computer Corner.

Issue Number 41:

Forth Column: ADTs, Object Oriented
Concepts.
- Improving the Ampro LB: Overcoming the
88Mb hard drive limit.
- How to add Data Structures in Forth
- Advanced CP/M: CP/M is hacker's haven,
and Z-System Command Scheduler.
- The Z-System Corner. Extended Multiple
Command Line, and aliases.
- Programming disk and printer functions
with C.
- LINKPRL: Making RSXes easy.
- SCOPY: Copying a series of unrelated
files.
- The Computer Corner.

Issue Number 42:

- Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth.

- Using BYE with NZCOM.

- C and the MS-DOS Screen Character
Aftributes.

The Computer Journal / #58

- Forth Column: Lists and object oriented
Forth.

- The Z-System Corner: Genie, BDS Z and
Z-System Fundamentals.

- 68705 Embedded Controller Application:
An example of a single-chip microcontroller

application.

- Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

- Reat Computing: The NS 32000.

- The Computer Corner

Issue Number 43:

- Standardize Your Floppy Disk Drives.

- A New History Shell for ZSystern.

- Heath's HDOS, Then and Now.

- The ZSystem Corner. Software update
service, and customizing NZCOM.

- Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.

- Lazy Evaluation: End the evaluation as
soon-as the result is known.

- §-100: There's still life in the ofd bus.

- Advanced CP/M: Passing parameters, and
complex error recovery.

- Real Computing: The NS32000.

- The Computer Corner.

Issue Number 44:

- Animation with Turbo C Part 1: The Basic
Tools.

- Multitasking in Forth: New Micros FE8FC11
and Max Forth.

- Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.

- DosDisk: MS-DOS disk format emulator for
CPM.

- Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.

- Real Computing: The NS32000.

- Forth Column: Handling Strings.

- 2-System Corner: MEX and telecommuni-
cations.

+ The Computer Corner

Issue Number 45:

- Embedded Systems for the Tenderfoot:
Getting started with the 8031.

- The Z-System Comer. Using scripts with
MEX.

+ The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

- Embedded Applications: Designing a Z80
R$-232 communications gateway, part 1.

- Advanced CP/M: String searches and
tuning Jetfind.

- Ahimation with Turbo C: Part 2, screen
interactions.

- Real Computing: The NS32000.

- The Computer Corner.

Issue Number 46:
- Build a Long Distance Printer Driver.

Using the 8031's built-in UART for seriat
communications.
- Foundational Modules in Modula 2.
- The Z-System Corner: Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

The Computer Journal

Back Issues

Sales limited to supplies in stock.

- Animation with Turbo C: Text in the
graphics mode.

- Z80 Communications Gateway:
Prototyping, Counter/Timers, and using the
Z80CTC.

Issue Number 47:

- Controlling Stepper Motors with the
B68HC11F

- Z-System Corner. ZMATE Macro Language
- Using 8031 interrupts

- T-1: What it is & Why You Need to Know

- ZCPR3 & Modula, Too

- Tips on Using LCDs: Interfacing to the
68HC705

- Real Computing: Debugging, NS32 Multi-
tasking & Distributed Systems

- Long Distance Printer Driver: correction

- ROBO-S0G 90

- The Computer Corner

Issue Number 48

- Fast Math Using Logarithms

- Forth and Forth Assembler

- Modula-2 and the TCAP

- Adding a Bernoulli Drive to a CP/M
Computer (Building a SCSI Interface)

- Review of BDS “Z"

- PMATE/ZMATE Macros, Pt. 1

- Real Computing

- 2-System Corner: Patching MEX-Plus and
TheWord, Using ZEX

- Z-Best Software

- The Computer Corner

Issue Number 49;

- Computer Network Power Protection

- Floppy Disk Alignment w/RTXEB, Pt. 1
- Motor Controi with the FE8HC11

- Controfling Home Heating & Lighting, Pt. 1
- Getting Started in Assembly Language
- LAN Basics

- PMATE/ZMATE Macros, Pt. 2

- Real Computing

- Z-System Corner

- Z-Best Software

- The Computer Corner

Issue Number 50:

- Offload a System CPU with the 7181

- Floppy Disk Alignment w/RTXEB, Pt. 2

- Motor Control with the F68HC11

- Modula-2 and the Command Line

- Controlling Home Heating & Lighting, Pt. 2
- Getting Started in Assembly Language Pt 2

- Local Area Networks

- Using the ZCPR3 IOP

- PMATE/ZMATE Macros, Pt. 3

- Z-System Corner, PCED

- Z-Best Software

- Real Computing, 32FX16, Caches
- The Computer Corner

Issue Number 51:

- Introducing the YASBEC

- Floppy Disk Alignment w/RTXEB, Pt 3

- High Speed Modems on Eight Bit Systems
- A Z8 Talker and Host

- Local Area Networks--Ethernet

- UNIX Connectivity on the Cheap

- PC Hard Disk Partition Tabie

- A Short introduction to Forth

- Stepped Inference as a Technique for
intelligent Real-Time Embedded Control

- Real Computing, the 32CG160, Swordfish,
DOS Command Processor

- PMATE/ZMATE Macros

- Z-System Corner, The Trenton Festival

- Z-Best Software, the Z3HELP System

- The Computer Corner

Issue Number 52:

- YASBEC, The Hardware

- An Arbitrary Waveform Generator, Pt. 1

- B.Y.O. Assembler...in Forth

- Getting Started in Assembly Language, Pt 3
- The NZCOM IOP

- Servos and the F68HC11

- Z-System Corner, Programming for
Compatibility

- 2-Best Software

- Real Computing, X10 Revisited

- PMATE/ZMATE Macros

- Controlling Home Heating & Lighting, Pt. 3

- The CPU280, A High Performance Single-
Board Computer

+ The Computer Corner

Issue Number 53:
- The CPU280
- Local Area Networks
- Am Arbitrary Waveform Generator
- Real Computing
- Zed Fest'91
- Z-System Corner
- Getting Started in Assembly Language
- The NZCOM 10P
- Z-BEST Software
- The Computer Corner

Issue Number 54:

- 2-System Corner

- B.Y.O. Assembler

- Local Area Networks

- Advanced CP/M

- ZCPR on a 16-Bit Intel Platform

- Real Computing

- Interrupts and the 280

- 8 MHZ on a Ampro

- Hardware Heavenn

- What Zilog never told you about the Super8
- An Arbitary Waveform Generator
- The Development of TDOS

- The Computer Corner

Issue Number §5:

- Fuzzilogy 101

- The Cyclic Redundancy Check in Forth
- The Internetwork Protocol (IP)

- Z-System Corner

- Hardware Heaven

- Real Computing

- Remapping Disk Drives through the Virtual
BIOS

- The Bumbling Mathmatician

- YASMEM

- Z-BEST Software

 The Computer Corner

Issue Number 56:
- TCJ - The Next Ten Years
- Input Expansion for 8031
- Connecting IDE Drives to 8-Bit Systems
- Real Computing
8 Queens in Forth
- Z-System Corner
- Kaypro-84 Direct File Transfers
- Analog Signal Generation
- The Computer Corner

Issue Number 57:

- Home Automation with X10
- File Transfer Protocols
- MDISK at 8 MHZ.

- Real Computing

- Shell Sort in Forth

- Z-System Corner

- Introduction to Forth
-DR. S-100

-Z AT Last!

- The Computer Corner

{ u.s. Foreign Foreign Total

Subscriptions {Surface) (Airmail)
1year (6 issues) $18.00 $24.00 $38.00
2 years (12 issues) $32.00 $44.00 $72.00
Back Issues

#20 thru #43 $3.50 ea. $6.00 ea.

#44 and up $4.50 ea. $7.00 ea.
MicroC Kaypro Disks $7.00 ea $10.00 ea
tems:

\.

Subscription Total
Back Issues Total
MicroC Disks Total

California state Residents add 7.25% Sales TAX

Total Enclosed

Name:

Address:

My Interests:

Payment is accepted by check or money order. Checks must be in US
funds, drawn on a US bank. Personal checks within the US are welcome.

TC.Jthe Computer Journal

P.O. Box 535, Lincoin, CA 95648-0535

Phone (916) 645-1670

The Computer Journal / #58

39

Computer Corner

By Bill Kibler

Well another issues is done and ready
for the press. It is late and I need to whip
this out so I can finish the issue. Yet I
actually do have items of importance
(depending on your point of view) to
comment on.

UZI on a Z180?

Rick Rodman’s column this month got
me thinking about the UZI program
(Unix 7 for the Z80). The intro I in-
cluded pointed out problems with such a
limited memory space. That sort of ruled
out doing much with it, until I consid-
ered the Z180. It would appear that a
little re-working is in order, and major
problems might be solved when it has a
full Megabyte of memory for swapping
instead of using the disk. Something we
need to consider.

Speaking of the Z180, I have gotten some
feed back on our proposed XT bus Z180
CPU card. So far the results is vary fa-
vorable. Everyone is in favor of it, ex-
cept price seems to be a major concern.
It would seem our competition is cheap
clones that are falling into the $100 range
and under. My position is still, that we
are offering much more than you will
get by buying that old clone.

What options, well 20MHZ CPU that
would require at least a 40MHZ 386 to
be as fast. Source code to operating sys-
tems and many utilities. Many times sim-
pler design. Access to very cheap 1/0
cards. Ability to use LAN cards and other
exotic I/O devices. Lots of boards that
can be bought for $5 to play with and
modify.

Of course you say, but why not the XT

itself. My answer is go ahead and try. I
spend many hours a week working on

40

adapting PC/XT software and hardware
for a living, and let me say without a
doubt it is no fun! I hate anything that is
written by Microsoft. The list of bugs in
those products is endless. The problem
is there is no way to work around most
of those bugs. What is in store for the
future, more complex problems and bugs.

So my position is the simpler the better.
Z180 on a XT bus is simple and straight
forward. I like that. Windows for
Workgroups, however is another suc-
cessful dog from Microsoft.

Windows for Workgroups

Well last week I set through four hours
of seeing just how Windows for
Workgroups works. It becomes very ap-
parent that the main objective is killing
any competition. The product contains
something to compete with almost every
vendor of LAN products. It contains mail
programs, LAN interfaces, schedule pro-
grams, their new database products, and
on into nausea.

The market is targeted at small busi-
nesses (2 to 5 users) with the idea of
eliminating sneaker nets (that is when
disk data is transferred in person from
machine to machine). Yet the $25 net-
work (1-800-628-7992 and tell them The
Computer Journal sent you) can do the
same thing with less overhead and no
need for windows. I would say my pro-
ductivity drop by 30% thanks to waiting
for windows to do it’s thing, Now do it
all with a Z180 and a few serial ports
and now we are talking simple and fast.

780 on a LAN?

One area [am looking into is tying CP/
M systems together. Now most servers

are MSDOS based (actually OS2 for
LanMan or Netware for the other 70%.)
And when it comes for raw storage the
cost ratio for a newer PC based machine
is definitely better than any other. So it
only logically makes sense to use them
for servers. Now to use a 386 with 8
Megabytes of memory for a word pro-
cessor seems to be a little overkill to me.

A better alternative would be using a
780 based machine, tuned for word pro-
cessing and connected to the PC server.
This seems a great ratio and balance of
simple and complex ways to solve prob-
lems. The large and virtual nature of the
server balances the speed and simplicity
of the Z80 for handling characters on a
screen.

1 guess one area to consider is how about
graphics on a Z80. When I look at how
most of the more recent word processor
are more like desktop publishers, I really
don’t see a problem. I even know of one
magazine published solely on a PC based
word processor. So in reality | find little
that could not be done with a CP/M
talking to a MSDOS server. So where is
that old LAN hardware and software
that started out on Z80s? There should
still be some of the old code and prod-
ucts kicking around. Anybody got any?
let me know will you.

Well I need to save room for the Kaypro
disk catalog, so I hope you consider the
Z180 on a PC bus and drop me or Hetb
a note about your ideas. Till later keep
on computing.

The Computer Journal / #58

K-1

MODEM PROGRAMS

1-DISK DOC 3k OMTI5 CoM 14k MODEMPAT COM 12k
CRC coM 3k KMDM795 DOC 1k 3Q coM ldk
CRC DboC 1k KMDM795 LIB 18k 8Q/U8Q DOC 2k
CRCKLIST CRC 1k MODEM7 COM Sk TERM DOoC 2k
o] coM 3k MODEM7 DOC 11k TERM MAC 4k
rLS coM 9k MODEMT+ cOM 12k usQ oo 10k

KMDMT795 AQM 50k MODEMPAT ASM Sk

MODEMPAT sets up the SIO (serial port) for whatever baud rate, bits
per character, stop bits, and parity you need.

MODEM7+ This is MODEM?7 with the MODEMPAT already added so
you can select the correct commurications interface each time you enter
MODEM7.

NOTE: See disk K28 for a later version of Modem 7. However, the disk
K28 version limits you to 300 or 1200 baud. This Modem 7+ gives you the
complete range from 300 to 9600 baud.

KMDM?795 A superset of MODEM?Y, this program lets you set baud rate
on the fly. However, it is not set up for changing the bits/char and such
like MODEM?7+.

TERM A disassembly of the TERM program that was distributed with
the early KAYPRO IIs and 4s. With this commented source, you can
configure it for your own needs.

SQUEEZE/UNSQUEEZE These programs squeeze and unsqueeze all
kinds of files.

K-2

UTILITIES

2-pI18x Doce 4k DIRCEK DOC 1k MAST CAT 1k
ALLOC COMs 2k DU-77 COMes 6k QCAT cot 1k
car coM 1k DU-77 DOCe 6k SUPERSUB COM 3k
CATAIOG DOC 8k DUIMPX COM 3k SUPERSUB DOC 5k
COMPARE COMe 2k DUMPX DOC 5k UCAT coM 2k
cre coMe 3k FINDBDS& coX 2k UNERALl HLP 3k
cRe poce 1k FINDEDS4 DOC 1k UNERAL9 COM 2k
CRCKLIST CRCe 2k FIX Co 36k UNERAlL9 Doc 3k
D COoM 3k FIX DoC 1k UNLQAD co 1k
D poc 3k PP cow 4k UNSPOOL COM 2k
DASM COM 10k FORMFEED CON 1k UNSPOOL DOC 14k
DASM DOC 27k FORMFEED DOC 1k WASH COMs 3k
DIR-DUMP COMe 1k LISTT co 2k

DIRCEK COM 2k LISTT DOC 4k

FORMFEED Run this program when you need a form feed on your
printer,

DIR-DUMP Displays all the disk files and their locations, along with the
user number.

D This super directory program produces an alphabetical list in vertical
order.

WASH A file transfer/maintenance program. Forerunner (and subset) of
SWEEP.

DUMPX Similar to the CP/M routine DUMP, DUMPX is incredibly
more powerful and more useful (e.g. displays the ASCII equivalents).
SUPERSUB A definite improvement over CP/M’s SUBMIT program.
ALLOC Produces a bit map of the disk and can write-protect files. Menu
driven.

COMPARE Compares two files,

DU-77 Very powerful disk utility. The user interface isn’t particularly
easy to learn but you can do anything to a disk with this famous
program.

LISTT Prints out CP/M files with headers, page numbers, and offsets
from left margin.

DASM True Zilog format disassembler for 8080 and Z80 object (.COM)
files.

UNSPOOL Lets you use your system and print at the same time
(without one of those fancy print buffers).

FINDBDS54 This super utility really checks a disk (without destroying
the data on it) and reports bad sectors.

CATALOG A group of programs to create and maintain a directory of
all the programs you have on all your disks.

UNERA Unerases files. Kinda handy.

The Computer Journal / #58

MCRO

(CORNUCOPIA

CATALOG OF
KAYPRO
CP/M

USER DISKS

Available in 5 1/4 190 K Disks, SSDD

« Dotted Programs will also run
on Commodore 128s

TC.J-rhe Computer Journal

P.0. Box 535, Lincoln, CA 95648-0535
Phone (916) 645-1670

41

K-3
GAMES

3-DISK DOCe 3k D coM 3k PRESSUP COMs 8k
ADV-SAVE DOCe 1k QAMES COMs 35k WASH coMe 3k
o coM 14k MAZE oo 3k WOMPUS COMe 15k
CAVEO e 1k M c + S5k WOMPUS DOCe 4k
CAVEl ¢ 1k e coMe Tk WOMPUS PABs 12k
CAVE2 o« 1k OTHELIO COM 22k SCEESS COMe 8k
CAVEd ¢ 1k OTHELIO DOC 2k ICHESS DOCe 3k
CAVES e 1k PACMAN COMe 18k

CRC coMe 3k PACMAN DOCe 2k

CRCKLIST CRCe 1k

PRESSUP C ¢ Ok

PACMAN Almost the real thing! And on a system that has no graphics!
ZCHESS A real honest-to-gosh, competent (at least more competent than
D chess game with a 1 to 6 level look-ahead.

OTHELLO Othello is a game you learn in minutes, and master in years.
GAMES Seven games all put together as one program. You select from
LIFE, HORSE RACES, MAZE, PATTERNS, BLACKJACK, ANIMAL, and
GO-BANG.

WUMPUS Wumpus is a classic computer game. You have a choice of
caves as you enter and you can map them as you go through.

PRESSUP Pressup is somewhat similar in play to Othello but is not as
difficult to master.

MM This is the Master Mind game. You try to guess what characters the
computer has chosen, The point of the game is to guess the characters in
as few moves as possible.

BIO Generates biorhythm charts, This handy program does it all,
complete with a graphic display of the results.

MAZE Generates random mazes (surprise!).

K-4

ADVENTURE

-EAYPRO 004+ Ok ADVI DATe 31k ADVT PTRe 15k
aov coMs 36k ADVI PTRe 4k

ADYD BAVe Ok ADVZ DAT-105k

ADVENTURE Here it is! The latest, greatest, most cussed adventure
ever devised by half-mortals. This cave is greatly expanded and the
creatures are much smarter (smarter than I anyway). These files total
191K so there isn’t room for the usual documentation. See
ADV-SAVE.DOC on disk K-3 for documentation.

K-5

MX-80/GEMINI 10X GRAPHICS SOFTWARE
5-DISK DOC 1k GRAY c sk HUGH GRFr 12k
BARL (-1 g 2k GRAY co 46k LINE GRr 3k
BAR2 GRr 2k GRAF poc 21k MEDIUOM GRF 4k
CIRCLE GRr 8k GRAFCIRC C 2k SNALL GRF 1k
e Te] oo ! GRAFFIIE C 2k STAR GRY 8k
CRCKLIST CRC 1k CRAFINVYT C 1k TITLE oxr sk
D oo 3k GRAFLINR C 2k

DEMOD [+ & GRAFPLOT C 2k

DEMO oo 41k GRAFUTIL C 3k

Don Brittain has created this graphics display package for use with
MX-80, FX-80 and FX-100 with Graftrax, or Gemini 10X printers.

GRAF An interactive routine that allows you to areate graphic images.
NOTE: You get the graphics on the printer only. Even the new Kaypros
cannot display the kind of high-resolution graphics that this package can
do. The .COM files will work with Epson MX-80 compatible printers
only. If you are familiar with C and have Aztec C you can try modifying
and recompiling the source to match a different printer.

42

K-6

TEXT UTILITIES

6-DI8K DoCe 4k ERTRNAY2 « 1k ROFr2 C 10k
CHOP c e+ 1k RNTAB ¢ o« 2k RIW c = 1k
CHOP cods 4k ENTAB coMe 3k K™ coMe 4k
ce c ¢ 2k EPEMODEA ASM Tk sICN8 coM 10k
ce coNe 4k EPSMODE4 COM 2k TRUNC € » 1k
cRe coMe 3k ERRIWIT o 1k TRUNC coMs 3k
CRCKLIST CRCe 2k FONT DATe 1k WRAP c ¢ T
D coM 3k M8 € ¢ 1k WRAP coMe 6k
Do C ¢+ & s coMe 4k WRAP DoCe, 3k
pOMP coMe 5k ROTY coMs 18k YOPTRYR e 1k
EDIT coMe 26k ROFT poce 8k

EDIT DOCe 10k norr H ¢ 4

EDIT HLPe 1k ROFT1 C o 12X

ROFF A UNIX-like text formatter.

SIGNS creates large block letters on your printer.

EPSMODEA Set print modes on your Epson MX80.

EDIT Full-blown line editor similar UNIX's EX.

CHOP cuts off a file after n bytes. CP will copy from one file or device to
another. DUMP outputs (to screen, disk, etc.) the HEX translation of a
file. MS lets you specify how many linefeeds you want between lines
(multiple space). WRAP1is a simple formatter.

ENTAB replaces blanks with tabs wherever possible.

RTW removes trailing whitespace from a text file.

TRUNC truncates each line in a text file at a specified column.

K-7

SMALL C VERSION 2

7-pI18K Doce 2k ITOX € ¢ 1k 8™ B e 1k
aABs C e« 1k LT C » 1k 8mI0 & - 3k
CALL ASNe 10k LIB E « 1k smia E + 1k
cxe coM- 3k LIBASM C + 1k BTROG® C ¢ 1k
CRCKLIST CRCe 2k OUZ C ¢« 1k UOI C o 1k
prot C + 1k PRINTT C * 2k WM E + 1k
Mo C o 1k SAMPLE DOCe Tk WML B ¢ 1k
EEILO HEX» Ok SIGN C + 1k XPoI C o 1k
TOLIB ASMs» 26k EMALIC DOCe 17k

P06 € ¢ 1k EMALLC2 DOCe 6k

I C s 1x B coMe 35k

Here is an expanded version of Ron Cain’s Small C. The additions to the
language are substantial and include such important features as I/0
redirection on STDIN and STDOUT, separate compilation of version 2
modules and many new library functions.

K-8

SOURCE OF SMALL C VERSION 2

ABS c e« 1k [ok} c ¢ S5k LIBASK € + 1k
cc DEFs 4k ccd C ¢ 1k oor c ¢ 1k
ccl ¢ « & ccdl c s+ Tk PRINTF C + 2k
cc1l C e 11k ccd2 c e+ 9 s1am c ¢ 1k
cc12 c o 8k cCcB80 DEFe &k f = pEre 4k
cc13 c « 8k cRe coMe 3k STIOA H ¢ 1k
cc2 cC ¢ 2k CRCKLIST CRCe 2k SERCMF C ¢ 1k
cc2l c o 7k DTOI c « 1k U0l c e« 1k
cc22 c s Sk 170D cC ¢ 1k X301 c ¢+ 1k
cc3 C ¢ 2k IT00 C ¢ 1k

cc3l c ¢ 5% IT0X ¢ o 1k

cc3z C e« 6 nere c ¢ 1k

K-8 contains the source of Small C version 2. You do not need this disk to
use the compiler on K7.

The Computer Journal / #58

K-9
GENERAL UTILITIES

$-DISK Doce 4k EX14 oo
ALIENS COM 14k EX14 poc

3k INSTALL SUB 1k

&
ALIKNS DOC 3k xx14 sUB Sk

1k

sk

1k

PABSWORD ASMe Sk
PASSWORD COM+ 1k

e coM 3k 14 8T SNOORY TXT 3k
CRCKLIST CRC 1k rIND ARMe S8ED2 ooM 11k
.D oo 3k FIND CoMs TREX oM+ 27k
DIF/8SED DOC 3k rIND DoCe 1k SCPR DOC 6k
pIF2 oM 15k IX cos 29k SCPR EEX 6k

=14 ASM 25k rx poc 1k

EX14 Great replacement for both SUBMIT and XSUB.

FIX A fantastic disk utility that allows you do nearly anything on a disk.
FIND Searches the disk for a string of uppercase characters.
PASSWORD allows you to password-protect files.

-ALIENS Space Invaders patched for the Kaypro.

TREK You finally get a chance to command the Starship Enterprise.
ZCPR This CCP replacement will look on drive A for a COM file when
you're logged in on drive B, page during TYPE, and more.

DONOT ATTEMPT TO INSTALL ZCPR ON THE KAYPRO 10!
DIF2/SSED With these utilities you can update someone else’s copy of a
program by simply creating a file of the updates (using DIF2) and then
sending only the differences.

K-10
7280 AND LINKING ASSEMBLERS

10-DISK DOC 3k CRONECPN DOC 8k LASK poc 5k
e coM 3k CROWECPM PRE Ok PRINTPRN ASM Sk
CRCELIST CRC 1k CROWECPM 280 143k PRINTPRN COM 1k
CROWRCPM COM 0k LAKM oM 6k

CROWECPM If you've been looking for a good, basic Z80 assembler for
$8, this is it. We modified the CROWE assembler so that it would work
on any CP/M system. Source code is included so you can extend it to
your heart’s content.

LASM A faster, linking, rewrite of the standard CP/M ASM assembler.
PRINTPRN This is a nice little program that makes it possible to list the
PRN files produced by the CROWECPM assembler on any printer.

K-11

CHECKBOOK PROGRAM - LIBRARY
UTILITIES

11-DISK DOCe 3k EXAMPL CHKe
CHECKS CoMes 10k EXAMPY, DOCe
CEECKS DOCe 19k EXAMPL MAMe
CEECKS 380+ 54k IDIR COMe
CRC CoMe 3k ILDIR DOCe
CRCKLIS? CRCe 1k 1DIR IR«
DISPIAY COM+» 3k LIBRAKY IBR*
DISPIAY DOCe 3k LRUN COMe

o coMs 18k
1w DOCe 23k
LUDEF1 DOC* 7k
PGLEY coMe 8k
Docs 1k
viIs: coMe 2k
VLIST DOCe 2k

NEBeppoR
;

DISPLAY is like the TYPE command except it allows you to
forward or backward. ¢ P
VLIST uses the cursor keys to vary the scrolling speed of a file you are
TYPEing.

GLST reformats a long text file of short words into columns.

CHECKS ‘keeps track of which checks are tax deductable and which
should be charged to various accounts. It also keeps a running balance.
LU (LIBRARY UTILITIES) This combination of utilities allows you to
extract individual files or nm COM files from the library without
extracting the first. You can also build your own library files.

The Computer Journal / #58

K-12

KAYPRO FORTH

12-DIBK DOCe 2k FORTH COMes 7k KFORTH COMe 16k
CRC coMs 3k FORTH DOCe 12k

CRCKLIST CRCe 1k PORTH 8CR+150k

There are two FORTHs on this disk. FORTH is true Fig FORTH.
KFORTH has been extended and includes its own screen editor,
decompiler, and 8080 assembler.

K-13
SOURCE FOR FIG-FORTH

13-DISK DOC 1k CRCKLIST CRC 1k YORTH cod Tx
CRC coM 3k FORTH ABM 46k

This disk contains the source of the Fig FORTH on disk K12.

K-14

SMARTMODEM PROGRAMS

14-DISK DOC 3k MODDEAT ASM 9k ENODEMK MAC 83k
BYX CON 2k MCOD@AT CoM 12k XMODEM COM 4k
cxe CoM 3k PHONE 001 1k XMODEN DOC Sk
CRCKLIST CRC 1k PHONE BAK 1k

D COM 3k SWODEM DoC 24k

KAYTERM DOC 5k SMODEMK COM 10k

SMODEMK Modem7 setup for the Kaypro and SmartModem.
XMODEM lets a remote user upload and download files.
BYE connects and disconnects your system from the phone line.

K-15
HARD DISK UTILITIES

15-DISK DoOC 6k CRCKLIST CRC 1k MULTCOPY COM 2k
Bl coM 1k D CONM 3k MULTCOPY DOC 1k
BACKUP ASM 31k FLOPCOPY ASN 17k SWLEP coM 28k
BACKU? COM 4k F1OPCOPY CON 3k SWEEP38 DOC 14k
BACKU? DOC 7% FLOPCOPY DOC 2k 14 ASM 4k
BIGBURST ASM 12k MAKE COM 3k v COM 1k
BIGBURST COM 2k MDIR ASM 10k UNSQ coM 12k
BIGBURST DOC 3k MDIR COM 1k

CRC COM 3k MOVE oM 1k

CRC DoC ik MULTCOPY ASM 14k

BACKUP is a lifesaver. It backs up your hard disk onto as many floppy
disks as necessary.

FLOPCOPY makes it easy to back up floppy disks on a system with one
floppy drive and a hard disk. It uses the hard disk as a buffer.
BIGBURST breaks apart any file that is too large to fit onto a floppy in
onepiece.

MULTCOPY operates like PIP, but will prompt you when the floppy is
full so you can change floppies.

MDIR This directory program displays files under ALL user areas and
alphabetically sorts the entries in each area.

MAKE/MOVE Two utilities for moving files between user areas.

U lets you change user area and drive with one command.

SWEEP lets you do nearly everything you normally do with PIP, only
easier. It's like TYPE, ERA, DIR, and PIP in one program.

43

K-16

PASCAL COMPILER

16-DISK DOC: 1k HWSDATA + 1k PSTACK DOCe 2k
COMPARE COM» 2Kk PASCAL DOC» 4k REGIN DOCe 3k
CRC coMs 3k PASYNTAX DOCe 6k RTP ASMe 11k
cac Docs 1k PC $UB. 1k RTP CoMe 2k
CRCKLIST CRCs 2k PrET coms 7k STIRLING COMs 2k
DISK poce 3k PFET PAS+ 11k STIRLING PAS+ 1k
0 coMs 3k PLAYDATA + 1k TESTER PAS: 4k
xQ PABs 2Kk PLAYKAL PASe 13k VALIDATE 8UB+ 1k
O EX14 coMs 3k POPS Docs 2k XA ocos 1k
EX14 DOCe €k POWTWO PASe 1k XA PCO+ 1k
o PASe 1k PRC CcOMe 16k

] coMs 6k PRC DoCe 12k

ms PASe 15k PPC PASe 26Kk

As it stands, this version of Pascal supports only a subset of the language,
but since the disk also contains complete source for the compiler, you can
extend it if you wish. The compiler is written in Pascal and it compiles
itself.

K-17

280 TOOLS

17-DISK DOCe 2k DASM DOCe 27k XLATE2 DOCe 3k
cre CoMe 3k DASM MACe T4k XLATE2 MACe 37k
CRC DOCs 1k DASMZLG MAC+ 17k

CRCKLIST CRCe 1k DISASMBL DOC+ 5k

DASM coMs 10k XLATE2 COMe 5k

XLATE2 translates 8080 assembly language programs into Z80
mMnemonics.
DASM is a friendlier version of the disassembler on disk K2.

K-18

SYSTEM DIAGNOSTICS

10DSKTST COM 3k DISKALGN MAC 9k MDIAGTTY COM 4k
18-DISK DOC 2k DISKTEST DOC 11k MDIAGTTY MAC 36k
ZDISKTST COM 3k DISKTEST MAC 24k MDIAGXXX DOC 13k
4DISKTST COM 3k LOWLPT COM 4k MIMRS ASM 21k
.. T coM 3k LONTTY COM 4k MRS coM 2k

CRCKLIST CRC 1k
DISFALGN COM 1k

MDIAGIPT COM 4k
MDIAGLPT MAC 36k

MEMRS Doc Tk

MEMRS performs a number of memory diagnostic tests from about
1000H to the bottom of BDOS (the TPA).

MDIAGTTY/MDIAGLPT Two programs to test from 1000H to the top
of memory. The test procedures are different and a bit more exhaustive
than those in MEMRS.

LOWTTY/LOWLPT Revisions of MDIAGTTY and MDIAGLPT that test
the portion of memory that is not tested by the others (0000H to 1000H).
DISKTST Nice little disk diagnostic which doesn’t require an alignment
disk or scope.

DISKALGN simply positions your drive head to a specified track. This
makes alignment with a standard analog alignment disk much easier
(you still need an alignment disk, a scope and a manual).

K-19
PROWRITER GRAPHICS SOFTWARE

19-DISK DOC 1k GRAF c 8k HOGH GRF 12k
BAR] GRF 2k GRAF CoM 41k LINE GRF 3k
BAR2 GRr 2k GRAF boc 21k MIDIUM GRF 4k
CIRCIE GRF Bk GRAFCIRC C 2k SMALL GRF ik
CRC coM 3k GRAFFILE C 2k 8TAR GRF 8k
CRCKLIST CRC 1k GRAFINVT C 2k TITLE GRF 8k
D coM 3k GRAFLINE C 2k
DEMO c Tk GRAFPLOT C 2k
DEMO COM 35k GCRAFUTIL C 5k

Don Brittain’s Prowriter version of disk K5. See the documentation on
that disk for more information.

K-20

PROGRAMS FOR MICROSPHERE’S COLOR
GRAPHICS BOARD

20-DISK DOC 2k PACINIT C 8k PIE poc 2k
cre coX 3k PAGAN C 7k PORTS © 1k
cre Doc 1k PAQMAN COM 24k SKETCH BAS 26k
CRCKLIST CRC 1k PAGAN 8CR 14k BSKETCHE COM 19k
EIGHSCR PAC 1k PACMONST C Sk SKETCH DOC 6k
PAC lk PACOTIL C 6k SKETCH 8CR 14k
PAC sUB 1x Pz BAS 9k TEXr oUT 10k
PACDEFS ¥ 3k PIC coM 26k

SBASIC Pacman, sketching, and pie chart programs for the color
graphics board.

K-21

SBASIC PROGRAMS AND SCREEN DUMP
ADDRESS DAT Ok DUMPBA MAC 8k MSTROUIND COMs 12k
cxe COMs 3k HANGMAN COM 21k BCRERN BASe 2k
CROKLIST CRCe 2k HANGMAN DOC 2k BCREEN COM+ Bk
DImt coMe 4k INSCREEN BAS 6k SCREEN DOC 1k
DIRt DOCe 1k INSCREEN COM 1lk BCROLL COMs 1k
DRIVER BASe 12k INSCREEN DOC 9k BCROLL DOC 2K
DRIVER COMe 13k MATH BASe 4k WORD CoM Bk
DRIVER DOCe 3k MATH COM» 9k WORD 1IB 1k
DUMP24 COM 1k MATH DOCe 1k XIATE BASe 2k
DUMP24 DOC 3k MATHl BASe 3k XIATE COMs+ 5K
DUNP24 MAC 6k MATHI COMe 13k XIATE DOCe 3k

DUMP8B4 COM 1k

DIR+ This disk utility does everything PIP does and much more.
DRIVER creates a menu of .COM files on drives A and B and executes
selected file.

DUMP24 Screen to printer dump for older (83) model Kaypros.
DUMP84 The same as the above program for the new generation
Kaypros.

HANGMAN Traditional word guessing game in SBASIC.

INSCREEN SBASIC screen input program.

MATH Micro C’s attempt at structured SBASIC coding using Math1 as
the victim.

MATH1 The math game in its original unstructured form.

MSTRMIND Mastermind game written in SBASIC.

SCREEN displays all displayable screen characters.

SCROLL allows viewing of files by scrolling forward or backward.

Foreign Eoreign Total
(Surface) (Airmail)
$18.00 $2400 $38.00
$32.00 $44.00 $72.00

4 Us.

Subscriptions
1year (6 issues)
2years (12 issues)

Back Issues
#20 thru #43 $3.50 ea. $6.00 ea.
#44 and up $4.50 ea. $7.00 ea.
MicroC Kaypro Disks $7.00 ea $10.00 ea

Subscription Total
Back Issues Total
MicroC Disks Total
California state Residents add 7.25% Sales TAX
Total Enclosed

Name:
Address:

My interests:

Payment is accepted by check or money order. Checks must be in US
funds, drawn on a US bank. Personal checks within the US are welcome.

TC.J the Computer Journal

P.O. Box 5§35, Lincoin, CA 95648-0535

Phone (916) 645-1670 y

The Computer Journal / #58

TC ’ The Comguter Journal

Discover

: The Z-Letter
= ||{The Z-letter is the only monthly
» - |[publication for CP/M and Z-System.
" . || Eagle computers and Spellbinder support.
Licensed CP/M distributor.

2 - Subscriptions: $18 US, $22 Canada and

:“}H Mexico, $36 Overseas. Write or call for
1| free sample.
The Z-Letter
Lambda Software Publishing
720 South Second Street
San Jose CA 95112-5820

Advent Kaypro Upgrades

TurboROM. Allows flexible
configuration of your entire
system, read/write additional
formats and more, only $35.
Personality Decoder Boards
Run more than two drives when
using TurboROM, $25.
Hard Drive Conversion Kits. Call
or write for availability & pricing.

(408) 293-5176

Call (916)483-0312
eves, weekends or write
Chuck Stafford
4000 Norris Ave.
Scaramento, CA 95824

(TCJ MARKET PLACE)

Advertising for small business
First Insertion: $50
Reinsertion: $35

Rates include typesetting.
Payment must accompany order.
VISA, MasterCard, Discover,
Diner's Club, Carte Blanche,
JCB, EuroCard accepted.
Checks, money orders must be
US funds. Resetting of ad
consitutes a new advertisement
at first time insertion rates.
Mail ad or contact ,

The Computer Journal
P.O. Box 53§

\ Lincoln, CA 95648-0536 J

CP/M SOFTWARE

~#l 100 page Public Domain Catalog, $8.60 plus $1.50 shipping
Il and handling. New Digital Research CP/M 2.2 manual, $19.95
il plus 83.00 shipping and handling. Also, MS/PC-DOS Soft-

- |t ware. Disk Copying, including AMSTRAD. Send self addressed,
-l stamped envelope for free Flyer, Catalog $1.00

Elliam Associates
Box 2664
Atascadero, CA 93423
805-466-8440

| S-100/1€€€-6%6

Compupro
Cromemco
IMSAI
and more!

AR e R SRS IR SER5588883E.

Cards. Docs «Systems

Dl‘. S'IOO

Herb Johnson,
CN 5256 #105,
Princeton, NJ 08543
(609) 588-5316

SUPPORT
OUR
ADVERTISERS
TELL THEM
"I SAW IT IN
TCJ"

8 BITS and Change
CLOSING OUT SALE!
All 12 Back Issues
for only $40
Send check to
Lee Bradley
24 East Cedar Street
Newington, CT 06111

(203) 666-3139 voice
(203) 665-1100 modem

280 STD USERS!

Cost Effective Upgrade
Clock S s to 10 MHz
1 Mbyte On-board Memory

Increase your system performance and reliability
while reducing your costs by replacing three of the
existing cards in gour system with one
Superintegrated Z80 Card from Zwick Systems.

A Superintegrated Card in your system protects your
software invesiment, requiring only minor changes to
your mature Z80 code. You can increase your
processing performance by up to 300 percent in a
matter of days!

Approximatly 35 percent of each Superintegrated
Card has been raserved for custom O functions
including A/D, D/A, Industrial /O, Parallel Ports, Seriai
Ports, Fax and Data Modems or almost any other
form of /O that you are currently using.

Call or Fax today for complete information on this
exciting new line of Superintegrated Cards and
upgrade your system the easy way!

ZWICK SYSTEMS INC.
Tel (613) 726-1377, Fax (613) 726-1902

